跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 17:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉柏池
研究生(外文):Bo-Chih Liu
論文名稱:實際蜂巢無線環境中基於傳播延遲與穩態信號強度差量測之無線定位效能研究
論文名稱(外文):Performance Study for Wireless Location Based on Propagation Delay and SSSD Measures in Practical Cellular Wireless Environments
指導教授:林根煌林根煌引用關係
指導教授(外文):Ken-Huang Lin
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:174
中文關鍵詞:無線定位穩態信號強度差傳播延遲
外文關鍵詞:Stationary Signal-Strength-DifferenceWireless LocationPropagation Delay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
無線定位發展的主要動機源自緊急通訊,由於商業應用促進的激勵,藉由行動端點本身現在所處之位置提供以位置為基礎的服務予行動端點在近年來受到許多的關注。對無線定位技術的一項較大的挑戰是如何在所需的精確度和執行的複雜度上取得平衡。
本論文的第一部分,當利用到達時間量測時,我們致力於無線定位所受限的基本的問題之一,且在低的複雜度和允諾的精確度上,發展一個簡單的塑模以估測行動端點位置。這一個塑模使用幾何轉換的方法和單一傳播延遲量測。使用幾何轉換的方法其貢獻為,允許我們克服定位換手的問題,即GSM 網路的強迫換手或者UMTS網路的三方軟式換手。使用所提議的定位塑模,可保有最小程度的網路效能衝擊,且降低硬體和軟體改變的複雜性和要求。
本論文的第二部分,當利用場強量測時,我們致力於無線定位所受限的基本的問題之一。考慮結合取決環境的訊號傳播塑模來估測位置時,由於傳播參數的不確定性導致一個傳播塑模誤差,進而擴大了距離估測的誤差。為了消除不確定性的傳播參數,第一個貢獻是基於差分化方法,發展一個新的無線定位技術,稱為穩態訊號強度差。然而,從穩態訊號強度差定位技術的初步分析所得到的效能是偏低的,其原因為,在所估測的距離值和距離差值內,存在一個大的偏差。為了達成效能的提升,第二個貢獻是基於一個幾何限制條件,利用一個修正方法對所估測之距離差值修正偏差。最後的貢獻是,我們歸納所提的修正方法,且用已經修正的距離差提供一個新的架構對所估測之距離值修正偏差。因為已經修正的距離值和距離差值分別是以最小平方方式計算取得,故達成低的計算負擔和非反覆的解式。目前為止就我們最適當的認知,此類修正的建議對於以場強為基礎的定位技術而言,這是第一次。當在所估測的距離值和距離差值內,存在一個大的偏差,提議的錯誤修正方法顯示證明執行的成效令人滿意,且證明可相當大地改進定位精確度。
Inspired by promotion of commercial applications, support of location-based services to mobile terminals through their current location has been receiving a lot of attention in recent years even though emergency communications is the primary motivation for development of wireless location. A major challenge to wireless location technique is how to balance the implementation complexity and required accuracy.
In the first part of this dissertation, we address one of the fundamental problems in wireless location when using the ToA measurements and develop a simple model to estimate the mobile terminal location with low complexity and promising accuracy. The model employs the geometrical transformation method with single propagation delay measurement. The contribution is that the use of geometrical transformation allows us to overcome the location handover problem, i.e., a forcing handover in a GSM (global system for mobile) network or a three-way soft handover in a UMTS (universal mobile telecommunications system) network. By using the proposed location model, the impact on network performance is kept at the minimum level and the complexity and requirements for hardware and software changes are reduced.
In the second part of this dissertation, we address one of the fundamental problems in wireless location when using the SS (signal strength) measurements. The first contribution is to develop a novel wireless location technique based on a “differ- encing” way, called the SSSD (stationary signal-strength-difference), to remove the uncertainty propagation parameters when merging environment-dependent signal propagation model into the location estimation. This is due to the uncertainty in propagation parameters causes a propagation model error that enlarges error in the distance estimation. The performance gained from the preliminary analysis of SSSD location technique, however, is degraded as a result of the large bias error in the estimated distance and distance difference. To achieve the performance enhancement, the second contribution is to correct the bias error in the estimated distance difference by using a correction method based on a geometric constraint condition. With the corrected distance difference, the final contribution is that we generalized the work on correction method and provide a new framework to correct the error in the estimated distance. As the corrected distance and distance difference is derived by LS (least square) computation, respectively, low computation burden and non-iterative solutions were achieved. To the best of our knowledge thus far, this is first such proposal for a correction to the SS-based location technique. It is demonstrated that the proposed error correction method is shown to perform well when encountering the large error in the estimated distance and distance difference, and prove that the location accuracy can be improved considerably.
Acknowledgements ………………………………………………………….. i
Abstract …………………………………………………………………….... iii
List of Figures ……………………………………………………………….. ix
List of Tables ……………………………………………………………….... xi
Notation and Symbols ………………………………………………………. xiii
List of Acronyms …………………………………………………………….. xiv
1 Introduction ……………………………………………………………… 1
1.1 Overview of Wireless Location Technique . . . . . . . . . . . . . . . . . . . . 3
1.2 Mathematical Preparation for the Location Estimation Problem . . . 9
1.3 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Performance Analysis for Wireless Location Uses Geometrical Transformation Method with Single Propagation Delay ……………...
23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Location Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Methodology for the Geometrical Transformation . . . . . . . . 29
2.2.2 Consideration for the Error Conditions . . . . . . . . . . . . . . . . . 34
2.3 Location Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Circular Multilateration Algorithm . . . . . . . . . . . . . . . . . . . . 39
2.3.2 Hyperbolic Multilateration Algorithm . . . . . . . . . . . . . . . . 41
2.4 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3 Preliminary Performance for Wireless Location Uses SSSD Measures …………………………………………………………… 58
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2 SSSD Location Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Location Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4 Field Trial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4 Performance Enhancement for Wireless Location Uses SSSD Measures …………………………………………………………… 86
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.1 Sources of Bias Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.2 Purpose of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Error Correction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1 Review of SSSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.2 Bias Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Performance Analysis: Hyperbolic Multilateration . . . . . . . . . . . . . . 103
4.3.1 Analysis of Bias Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Location Accuracy for Urban and Rural Environments . . . . . 110
4.4 Performance Analysis: Circular Multilateration . . . . . . . . . . . . . . . . 118
4.4.1 Analysis of Bias Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.2 Location Accuracy for Urban Environments . . . . . . . . . . . . . 121
4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5 Conclusions …………………………………………………………… 132
Appendices …………………………………………………………………… 137
A Residual Algorithm ……………………………………………………... 137
B Base Vector Algorithm ………………………………………………….. 141
Bibliography …………………………………………………………………. 146
Vita …………………………………………………………………………… 155
[1] G. L. Turin, W. S. Jewell, and T. L. Johnston, “Simulation of urban vehicle- monitoring systems,” IEEE Trans. Veh. Tech., vol. VT-21, no. 1, pp. 9-16, Feb. 1972.
[2] H. Staras and S. N. Honickman, “The accuracy of vehicle location by trilateration in a dense urban environment,” IEEE Trans. Veh. Tech., vol. VT-21, no. 1, pp. 38-43, Feb. 1972.
[3] G. D. Ott, “Vehicle location in cellular mobile radio system,” IEEE Trans. Veh. Tech., vol. VT-26, no. 1, pp. 43-46, Feb. 1977.
[4] FCC, “FCC acts to promote competition and public safty in enhanced wireless 911 services,” Washington, DC: WT Rep. 99-27, Sept. 15, 1999.
[5] EC recommendation of the processing of caller location information in electronic communication networks for the purpose of location-enhanced emergency call services, C(2003)2657, July 25, 2003.
[6] Working document of the EC services COCOM05-07, “Implementation of the single European emergency number 112: follow-up, ” March 18, 2005.
[7] Honglei Miao, Kegen Yu, and M. J. Juntti, “Positioning for NLOS propagation: Algorithm derivations and Cramer-Rao Bounds,” IEEE Trans. Veh. Tech., vol. 56, no. 5, pp. 2568-2580, Sept. 2007.
[8] R. Jurgen, “Smart cars and highways go global,” IEEE Spectr., vol. 28, no. 5, pp. 26-16, May 1991.
[9] W. Collier and R. Weiland, “Smart cars, smart highways,” IEEE Spectr., vol. 31, no. 4, pp. 27-33, Apr 1994.
[10] V. Pandey, D. Ghosal, and B. Mukherjee, “Exploiting user profiles to support differentiated servies in next-generation wireless network,” IEEE Netw., vol. 18, no. 5, pp. 40-48, Sept./Oct. 2004.
[11] M. Chiu and M. A. Bassiouni, “Predictive schemes for handoff prioritization in cellular networks based on mobile positioning,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp. 510-522, Mar. 2000.
[12] J. Ye, J. Hou, and S. Papavassiliou, “A comprehensive resource management framework for next-generation wireless networks,” IEEE Trans. Mobile Comput., vol. 1, no. 4, pp. 249-264, Oct.-Dec. 2002.
[13] K. Yu, et., al, , “Localization,” in Ultra-Widebasd Wireless Communications and Networks, New York: Wiley, pp. 279-304, 2006.
[14] I. Oppermann, L. Stoica, A. Rabbachin, Z. Shelby, and J. Haapola, “UWB wireless sensor networks: UWEN-A practical example,” IEEE Commun. Mag., vol. 42, no. 12, pp. 527-523, Dec. 2004.
[15] J. J. caffery. Jr and G. L. Stüber, “Overview of radiolocation in CDMA cellular systems,” IEEE Commun. Mag., vol. 36, no. 4, pp. 38-45, Apr. 1998.
[16] T. Rappaport, J. H. Reed, and B. D. Woerner, “Position location using wireless communication on highways of the future,” IEEE Commun. Mag., vol. 34, no. 10, pp. 33-41, Oct. 1996.
[17] C. Drane, M. Macnaughtan, and C. Scott, “Positioning GSM telephones,” IEEE Commun. Mag., vol. 36, no. 4, pp. 46-54, Apr. 1998.
[18] S. Sakagami, S. Aoyama, K. Kuboi, S. Shirota, and A. Akeyama, “Vehicle position estimates by multibeam antennas in multipath environments,” IEEE Trans. Veh. Tech., vol. 41, no. 1, pp. 63-68, Feb. 1992.
[19] R. Klukas and M. Fattouche, “Line-of-sight angle of arrival estimation in the outdoor multipath environment,” IEEE Trans. Veh. Tech., vol. 47, no. 1, pp. 342-352, Feb. 1998.
[20] S. Venkatraman, J. Caffery, Jr., and H. R. You, “A novel ToA location algorithm using LoS range estimation for NLoS environments,” IEEE Trans. Veh. Tech., vol. 53, no. 5, pp. 1515-1524, Sept. 2004.
[21] Y. T. Chen, W. Y. Tsui, H. C. So, and P. C. Ching, “Time-of–arrival based localization under NLOS conditions,” IEEE Trans. Veh. Tech., vol. 55, no. 1, pp. 17-24, Jan. 2006.
[22] Y. Qi, H. Kobayashi, and H. Suda, “On time-of-arrival positioning in a multipath environment, ” IEEE Trans. Veh. Tech., vol. 55, no. 5, pp. 1516-1526, Sept. 2006.
[23] Y. Qi, H. Kobayashi, and H. Suda, “Analysis of geolocation in a non-line-of-sight environments, ” IEEE Trans. Wireless Commun., vol. 5, no.3, pp. 672-681, Mar. 2006.
[24] J. J. caffery. Jr and G. L. Stüber, “Subscriber location in CDMA cellular networks,” IEEE Trans. Veh. Tech., vol. 47, no. 6, pp. 406-416, Nov. 1998.
[25] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Processing, vol. 42, no.8, pp. 1905-1915, Aug. 1994.
[26] Y. T. Chan, H. Y. Chin, and P. C. Ching, “Exact and approximate maximum likelihood localization algorithms,” IEEE Trans. Veh. Tech., vol. 55, no. 1, pp. 10-16, Jan. 2006.
[27] T. Roos, P. Myllymaki, and H. Tirri, “A statistical modeling approach to location estimation,” IEEE Trans. Mobile Computing, vol. 1, pp. 59-69, no. 1, Jan. 2002.
[28] H. L. Van Trees, Detection, Estimation, and Modulation Theory, New York: Wiley, 2001.
[29] Avriel, M. Nonlinear Programming: Analysis and Methods. Mineola, NY : Dover Publications, 2003.
[30] G. A. F. Seber and C. J. Wild, Nonlinear Regress. Hoboken, NJ: Wiley-Interscience, 2003.
[31] W. M. Foy, “Position-location solutions by Taylor series estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-12, no. 2, pp. 187-194, Mar. 1976.
[32] J. M. Delosme, M. Morf, and B. Friedlander, “A linesr equation approach to locating sources from time-difference-of-arrival measurements,” IEEE Acoust., Speech, and Signal Processing, pp. 818-824, 1980.
[33] J. O. Smith and J. O. Abel, “Closed-form least-squares source location estimation from range-difference measurements,” IEEE Acoust., Speech, and Signal Processing, vol. ASSP-35, pp. 1661-1669, Dec. 1987.
[34] B. Friedlander, “A passive localization algorithm and its accuracy analysis,” IEEE J. Ocean. Eng., vol. OE-12, pp. 234-245, Jan. 1987.
[35] H. C. Schau and A. Z. Robinson, “Passive source localization employing intersecting spherical surfaces from time-of-arrival differences,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1223-1225, Aug. 1987.
[36] ETSI, “Digital cellular telecommunications system (Phase 2+); Radio subsystem synchronization (GSM 05.10 version 7.3.0 Release 1998),” May 2000.
[37] 3GPP, “Universal Mobile Telecommunications System (UMTS); User Equipment (UE) positioning in Universal Terrestrial Radio Access Network (UTRAN); Stage 2 (3GPP TS 25.305 version 7.1.0 Release 7),” Sept. 2005.
[38] Y. Zhao, “Standardization of mobile phone positioning for 3G systems,” IEEE Commun. Mag., vol. 40, no. 7, pp. 108-116, July 2002.
[39] N. Levanon, ” Lowest GDOP in 2-D scenarios”, IEE Proc.-Radar, Sonar, Navig., vol. 147, no. 3, June 2000.
[40] M. Pent, M. A. Spirito, and E. Turco, “Method for positioning GSM mobile station using absolute time delay measuements,” Electron. Lett., vol. 33, no. 24, pp. 2019–2020, Nov. 1997.
[41] M. A. Spirito and A. G. Mattiol, “Preliminary experimental results of A GSM mobile phones positioning system based on timing advance,” in Proc. IEEE Veh. Tech. Conf., vol. 4, pp. 2072–2076, Sept. 1999.
[42] M. A. Spirito, S. Pöykkö, and O. Knuuttila, “ Experimental performance of methods to estimate the location of legacy handsets in GSM,” in Proc. IEEE Veh. Tech. Conf., vol. 4, pp. 2716–2720, 2001.
[43] M. Pettersen, R. Eckhoff, P. H. Lehne, T. A. Worren, and E. Melby, “An experimental evaluation of network-based methods for mobile station positioning,” in Proc. IEEE Symposium on Personal, Indoor and Mobile Radio Comm., vol. 5, pp. 2287-2291, Sept. 2002.
[44] M. N. Borenovic, M. I. Simic, A. M. Neskovic, and M. M. petrovic, “Enhanced Cell-ID+TA GSM positioning technique,” in Proc. 2005 Int’l Conf. on Computer as a Tool (EUROCON), vol. 2, pp. 1176-1179, Nov.2005.
[45] K. C. Budka, Doru Calin, Byron Chen, and D. Jeske, “A Bayesian method to improve mobile geolocation accuracy,” in Proc. IEEE Veh. Techn. Conf., vol. 2, pp. 1021–1025, Sept. 2002.
[46] M. silventoinen and T. Rantalainen, “Mobile station emergency locating in GSM,” in Proc. IEEE Personal Wireless Commun. Conf., pp. 232-238, Feb.1996.
[47] J. H. Reed, K. J. Krizman, B. D. Woerner, and T. S. Rappaport, “An overview of the challenges and progress in meeting the E-911 requirements for location scervce,” IEEE Commun. Mag., vol. 36, no. 4, pp. 30-37, Apr. 1998.
[48] M. A. Spirito, “ On the accuracy of cellular mobile station location estimation,” IEEE Trans. Veh. Tech., vol. 50, no.3, pp. 674-685, May 2001.
[49] Evaluation sheet for the timing advance positioning method, Doc. T1P1.5/98-033, Jan. 1998. T1P1.
[50] J. Borkowski, J. Niemelä, and J, Lempiäinen, “Performance of Cell ID+RTT hybrid positioning method for UMTS radio network,” in Proc. 5th European Wireless Conf., pp. 487-492, Feb. 2004.
[51] J. Niemelä and J. Borkowski, “Topology planning considerations for capacity and location technique in WCDMA radio networks,” in Proc. 10th Open European Summer School and IFIP WG6.3 Workshop (EUNICE), pp. 1-8, June 2004.
[52] J. Borkowski, J. Niemela, and J. Lempiainen, “Enhanced performance of Cell ID+RTT by implementing forced soft handover algorithm,” in Proc. IEEE Veh. Tech. Conf., vol. 5, pp. 3545–3549, Sept. 2004.
[53] G. P. Yost and S. Panchapakesan, “Improvement in estimation of time of arrival (TOA) from timing advance (TA),” in Proc. IEEE Int’l Con. on Universal Personal Commun. (ICUPC), vol.2, pp. 1367-1372, Oct. 1998.
[54] M. P. Wylie and J. Holtzman, “The nonline of sight problem in mobile location estimation,” in Proc. IEEE Int. Conf. Universal Personal Commun.(ICUPC), vol. 2, pp. 827-831, Sept. 1996.
[55] Li Cong, and Weihua Zhuang, “Nonline-of-sight error mitigation in mobile location, ” IEEE Trans. Wireless Commun., vol. 4, no.2, pp. 560-573, Mar. 2005.
[56] S. Venkatraman, J. Jr. Caffery, and H. R. You, “Location using LOS range estimation in NLOS environments,” in Proc. IEEE Veh. Tech. Conf., vo.2, pp. 856-860, May 2002.
[57] Li Cong, and Weihua Zhuang, “Nonline-of-sight error mitigation in TDOA mobile location, ” in Proc. IEEE Global Telecommunications Conf., vol. 1, pp. 680-684, Nov. 2001.
[58] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation measurements and models for wireless communications channels,” IEEE Commun. Mag., vol. 33, no. 1, pp. 42-49, Jan. 1995.
[59] B. H. Fleury and P. E. Leuthold, “Radiowave propagation in mobile communi- cations: An overview of European research,” IEEE Commun. Mag., vol. 34, no. 2, pp. 70-81, Feb. 1996.
[60] T. S. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall, 2002.
[61] Joseph K. Y. Ng, Stephen K, Chan, and Kenny M. K. Chu, “Location estimation algorithms for providing location services within a metropolitan area based on a mobile phone network,” in Proc. 5th Int’l. Workshop on Mobility Database and Distributed Systems, pp. 710-915, Sept. 2002.
[62] Xinrong Li, “RSS-based location estimation with unknown patheloss model, ” IEEE Trans. Wireless Commun., vol. 5, no.12, pp. 3626-3633, Dec. 2006.
[63] Kenneth M. K. Chu, Karl R. P. H. Leung, Joseph K. Y. Ng, and C. H. Li, “Locating mobile stations with statistical directional propagation model,” in Proc. IEEE Advanced Information Networking and Applications Conf., vol. 1, pp. 230-235, Mar. 2004.
[64] M. Hata, “Empirical formula for propagation loss in land mobile radio services,” IEEE Trans. Veh. Tech., vol. 29, no. 3, pp. 317-325, Aug. 1980.
[65] European Cooperation in the Field of Scientific and Technical Research EURO- COST 231, “Urban transmission loss models for mobile radio in the 900 and 1800 MHz bands,” Revision 2, Sept. 1991.
[66] M. Aso, M. Kawabata, and T. Hattori, “A new location estimation method based on maximum likelihood function in cellular systems,” in Proc. IEEE Veh. Tech. Conf., vol. 1, pp. 106-110, 2001.
[67] M. Aso, T. Skikawa, and T. Hattori, “Mobile station location estimation using the Maximum Likelihood method in sector cell systems,” in Proc. IEEE Veh. Tech. Conf., vol. 2, pp. 1192-1196, Sept. 2002.
[68] K. W. Cheung, H. C. So, W. K. Ma, and Y. T. Chan, “Received signal strength based mobile positioning via constrained weighted Least Squares,” in Proc. IEEE Acoust., Speech, Signal Processing Conf. vol. 5, pp. 137-140, Apr. 2003.
[69] M. McGuire, K. N. Plataniotis, and A. N. Venetsanopoulos, “Data fusion of power and time measurements for mobile terminal location,” IEEE Trans. Mobile Computing, vol. 4, no.2, pp. 142-153, Mar. 2005.
[70] H. L. Song, “Automatic vehicle location in cellular communication systems,” IEEE Trans. Veh. Tech., vol. 43, no. 4, pp. 902-908, Nov. 1994.
[71] X. Shen, J. W. Mark, and J, Ye, “Mobile location estimation in cellular networks using Fuzzy Logic,” in Proc. IEEE, Veh. Tech. Conf.,vol. 5, pp. 2108-2114, Sept. 2000.
[72] J. Muhammad, A. Hussain, and W. M. Ahmed, “New neural network based mobile location estimation in urban propagation models,” in Proc. 7th Int’l. Multi Topic Conf., pp. 146-150, Dec. 2003.
[73] M. Hata and T. Nagastu, “Mobile location using signal strength measurement in cellular system,” IEEE Trans. Veh. Tech., vol. VT-29, no. 2, pp. 245-251, May 1980.
[74] M. Hellebrandt, R. Mathar, and M. Scheibenbogen, “Estimating position and velocity of mobiles in a cellular radio network,” IEEE Trans. Veh. Tech., vol. 46, no. 1, pp. 65-71, 1997.
[75] C. L. C. Wong, M. C. Lee and R. K. W. Chan, “GSM-based mobile positioning using WAP,” in Proc. IEEE Wireless Commun. and Netw. Conf., vol. 2, pp. 874-878, 2000.
[76] Z. Liangxue and Z. Jinkang, “Signal-strength-based cellular location using dynamic window-width and double-averaging algorithm,” in Proc. IEEE Veh. Tech. Conf., vol. 6, pp. 2992-2997, Sept. 2000.
[77] E. Vanmarcke, Random Fields: Analysis and Synthesis. Cambridge, MA: MIT Press, 1983.
[78] W. C. Y. Lee, Mobile Communications Design Fundamentals. NewYork, John Wiley, 1993.
[79] B. Sklar, Digital Communications: Fundmentals and Applications, Upper Saddle River, NJ: Prentice Hall, 2001.
[80] W. Smith, Jr., “Passive location of mobile cellular telephone terminals,” in Proc. IEEE Int. Carnahan Conf. Security Tech., pp. 221-225, Oct. 1991.
[81] H. K. Lee and C. Rizos, “A framework for calibrating NLOS error to support LBS in urban environments,” in Proc. 2003 Int. Symposium on GPS/GNNS, pp. 69-76, Nov. 2003.
[82] H. K. Lee, B. Li, and C. Rizos, “Implementation procedure of wireless signal map matching for location-based services,” in Proc. IEEE Int. Symposium Signal Processing and Information Tech., pp. 18-21, Dec. 2005.
[83] W. R. Hahn and S. A. Tretter, “Optimum processing for delay vector estimation in passive signal arrays,” IEEE Trans. Information Theory, vol. IT-19, no. 5, pp. 608-614, Sept. 1973.
[84] R. Schmidt, “Least squares range difference location,” IEEE Trans. Aerosp. Electron. Syst., vol.32, pp. 234-242, Jan. 1996.
[85] W. M. Foy, “Position-location solutions by Taylor series estimation,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-12, no. 2, pp. 187-194, Mar. 1976.
[86] R. Yamamoto, H. Matsutani, H. Matsuki, T. Oono, and H. Ohtsuka, “Position location technologies using signal strength in cellular systems,” in Proc. IEEE Veh. Tech. Conf., pp. 2570-2574, May 2001.
[87] R. E. Ziemer and P. L. Peterson, Introduction to Digital Communication. 2nd ed. Prentice Hall, 2001.
[88] A. J. Weiss, “On the accuracy of a cellular location system based on RSS measurements, ” IEEE Trans. Veh. Tech., vol. 52, pp. 1508-1518, Nov. 2003.
[89] G. Strang, and K. Borre, Linear Algebra, Geodesy, and GPS, Cambridge, MA: Wellesley-Cambridge Press, 1997.
[90] R. O. Schmidt, “A new approach to geometry of range difference location,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-8, no. 6, pp. 821-835, Nov. 1972.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top