(3.215.183.251) 您好!臺灣時間:2021/04/22 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏誠
研究生(外文):Po-Cheng Chen
論文名稱:FlexRay車載網路實體層之傳接器與時脈產生器
論文名稱(外文):Transceiver and Clock Generator for FlexRay-based Automobile Communication Systems
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:82
中文關鍵詞:車載網路傳接器時脈產生器
外文關鍵詞:Clock generatorFlexRayTransceiver
相關次數:
  • 被引用被引用:2
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近年來汽車電子產品的蓬勃發展,使得車用電子產品的數量不斷上升。為了將這些車用電子產品有效的連接,車載網路的重要性日益漸增。本篇論文主要為設計及開發新一代車載網路規格(FlexRay)之實體層系統晶片所需之傳接器與時脈產生器。
本篇論文首先提出一個類低電壓差動訊號(LVDS-like)的傳送電路架構用以驅動車載網路實體層之匯流排。另外,提出一個使用三個比較器架構的接收電路,用以接收匯流排上之資料以及狀態的辨認。
其次,車用網路所需之時脈產生器為系統安全所必備,本論文提出一個具有抗製程、電壓、及溫度飄移的20 MHz時脈產生電路,一個小飄移的1 MHz震盪器,以及一個溫度偵測電路。
為符合系統晶片整合設計的精神,所有提出的設計僅使用0.18 um製程,具有與數位控制電路高度整合之特性。另外,所提出的傳送接收電路設計經過相當完全的測試,包含溫度環境測試及與真實車載網路交互通信整合測試。最後,此傳送接收電路最高可達到40 Mbps之傳送接收速度。
Thanks to the booming of car electronics in recent years, more car electronics devices are installed in ve-hicles. These devices are connected by in-vehicle communication networks. In this thesis, we present the tran-sceiver and clock generator design for the physical layer of a FlexRay-based in-vehicle communication protocol.
Regarding the transceiver design, a LVDS-like transmitter is proposed to drive the twisted pair of the bus. By contrast, a 3-comparator scheme is used to carry out the required bit-slicing and state recognition at the re-ceiver end.
The reliability and safety are the priority design factors for electronics. A robust 20 MHz clock generator with process, supply voltage, and temperature compensation, a sub-1 MHz oscillator, and a temperature detector are included in our clock generator design.
All of these designs are implemented by using a typical 0.18 um single-poly six-metal CMOS process. The proposed prototypical transceiver has been tested by a thermo chamber to justify its operation in the required temperature rage, i.e., -40°C to 125°C. Moreover, the compatibility of our design is also verified in a real FlexRay-based network. The maximum throughput of the proposed prototypical transceiver can reach 40 Mbps.
致謝 i
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables ix
CHATPER 1 INTRODUCTION 1
1.1 Introduction to FlexRay Communication Systems 1
1.2 Motivation 3
1.3 Literature Review 9
1.2.1 The transceiver design for FlexRay communication systems 9
1.2.2 Clock generators in FlexRay communication systems 9
1.4 Thesis Overview 10
Chatper 2 THE TRANSCEIVER DESIGN FOR FLEXRAY SYSTEMS 11
2.1 Introduction 11
2.2 Transceiver Design 12
2.2.1 Transmitter architecture 14
2.2.2 Receiver architecture 18
2.2.3 Voltage regulator architecture 23
2.3 Simulation 25
2.3.1. Simulation of transmitter 25
2.3.2. Simulation of receiver 28
2.3.3. Simulation of regulator 29
2.3.4. Layout view 30
2.4 Measurements 31
2.4.1 Timing verification and temperature measurement 31
2.4.2 Compatibility verification 34
2.4.3 Die photo 36
2.5 Summary 37
CHATPER 3 CLOCK GENERATORS IN FLEXRAY SYSTEMS 38
3.1 Introduction 38
3.2 Circuit Design 39
3.2.1 20 MHz clock generator with PVT-compensation 39
3.2.2 Sub-1 MHz oscillator with small fluctuation 46
3.2.3 Temperature detector 49
3.3 Simulation 50
3.3.1 Simulation of 20 MHz clock generator 50
3.3.2 Simulation of sub-1 MHz oscillator 52
3.3.3 Simulation of temperature detector 52
3.3.4 Layout view 53
3.4 Measurements 55
3.4.1 Sub-1 MHz oscillator measurement results 55
3.4.2 Temperature detector measurement results 56
3.4.3 Die photo 58
3.5 Summary 58
Chatper 4 CONCLUSION & FUTURE WORKS 60
Reference 62
Appendix 66
[1]D. K. Ward, H. L. Fields, “A vision of the future automotive Electronics,” SAE Paper 2000-0101358.
[2]H. Kopetz, “Automotive electronics,” in Proc. Euromicro Conf. Real-Time Syst. (EMRTS), pp. 132-140, Jun. 1999.
[3]N. Navet, Y. Song, F. Simno-Lion, and C. Wilwert, “Trend in automotive communication systems,” in Proc. of the IEEE, vol. 93, no.6, pp. 1204-1223, June 2005.
[4]B. D. Emaus, “Current vehicle network architectures trends – 2000,” SAE Paper 200-01-0152.
[5]H. Schopp, and D. Teichner, “Video and audio applications in vehicles enabled by networked systems,” in Proc. Int. Conf. Consumer Electronics (ICCE), pp. 218-219, Jun. 1999.
[6]FlexRay - EPL-Specification - V2.1, May 2005.
[7]FlexRay - Protocol Specification - V2.1.rev A, Mar. 2006.
[8]FlexRay Communications System - BG Specification - V2.0, Jun. 2004.
[9]F. Baronti, P. D’Abramo, M. Knaipp, R. Minixhofer, R. Roncella, R. Saletti, M. Schrems, R. Serventi, and V. Vescoli, “ FlexRay transceirver in a 0.35um CMOS high-voltage technology,” in Proc. Design, Automation Test Europe, (DATE), vol. 2, no. 6-10, pp. 1-5, Mar. 2006.
[10]A. Techmer, and P. Leteinturier, “Implementing FlexRay on silicon,” in Proc. Int. Conf. Networking, Int. Conf. Syst. Int. Conf. Mobile Communications Learning Technologies (ICN/ ICONS/ MCL), pp. 23-29, Apr. 2006.
[11]P. M. Szecowka, and M. A. Swiderski, “On hardware implementation of Flexray bus guardian module,” 14th Int. Conf. Mixed Design Integrated Circuits and Syst. (MIXDES), pp. 309-312, Jun. 2007.
[12]K. Kurita, T. Hotta, T.Nakano, and N. Kitamura, “PLL-based BiCMOS on-chip clock generator for very high speed microprocessor,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 585-589, Apr. 1991.
[13]K. Sato, T. Sase, H.Sato, I. Ikushima, and S. Kojima, “A low power 128-MHz VCO for monolithic PLLs,” IEEE J. Solid-State Circuits, vol. 23, no. 4, pp. 474-479, Apr. 1988.
[14]B. L. Baranco, A. R. Vazquez, E.S. Sinencio, and J. L. Huertas, “Frequency tuning loop for VCOs,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 2617-2620, May 1999.
[15]H. Chen, E. Lee, and R. Geiger, “A 2 GHz VCO with process and temperature compensation,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 569-572, May 1999.
[16]Y.-S Shyu, and J.-C Wu, “A process and temperature compensated ring oscillator,” in Proc. Asia Pacific Conf. (ASICs), pp. 283-286, Aug. 1999.
[17]J. Routama, K. Koli, and K. Halonen, “A novel ring-oscillator with a very small process and temperature variation,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 181-184, Jun. 1998.
[18]A. E. Buck, C.L. McDonald, S.H. Lewis, and T.R. Viswanathan, “A CMOS bandgap reference without resistors,” IEEE J. Solid-State Circuits, vol. 37, no. 1, pp. 81-83, Jan. 2002.
[19]C.-C. Wang, Y.-L. Tseng, T.-J. Lee, and R. Hu, “Low-variation 1.0 MHz clock generator with temperature compensation bias,” in Proc. 2003 Workshop Consumer Electronics (WCE), pp. 133 (CD-ROM version), Nov. 2003.
[20]K. Sundaresan, P. E. Allen, F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
[21]A. Vilas Boas, and A. Olmos, “A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 501-504, May 2004.
[22]A. Olmos, “A temperature compensated fully trimmable on-chip IC oscillator,” in Proc. Symp. Integrated Circuits Syst. Design (SBCCI), pp 181-186, Sep. 2003.
[23]S.-S. Lee, T.-G. Kim, J.-T. Yoo, and S.-W. Kim, “Process and temperature compensated CMOS voltage-controlled oscillator for clock generators,” Electronics Letters, vol. 39, no. 21, pp. 1484-1485, Oct. 2003.
[24]G. de Vita, F. Marraccini, and G. Iannaccone, “Low-voltage low-power CMOS oscillator with low temperature and process sensitivity,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 2152-2155, May 2007.
[25]S. R. Boyle, and R. A. Heald, “A CMOS circuit for real-time chip temperature measurement,” in Proc. 39th IEEE Computer Society Int. Conf. (COMPCON), pp. 286-291, Mar. 1994.
[26]M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-μm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no.7, pp. 1117-1122, Jul. 1998.
[27]Y. Zhai, S.B. Prakash, M.H. Cohen, and P. A. Abshire, “Detection of on-chip temperature gradient using a 1.5V low power CMOS temperature sensor,” in Proc. IEEE Int. Symp. Circuit Syst. (ISCAS), pp. 1171-1174, May 2006.
[28]H.-C. Chow, and W.-W. Sheen, “Low power LVDS circuit for serial data communications,” in Proc. Int. Symp. Intelligent Signal Processing Communication Syst. (ISPACS), pp. 293-296, Dec. 2005.
[29]C.-C. Wang and J.-M. Huang, “1.0 Gbps LVDS transceiver design using a common mode DC biasing,” 2004 The 15th VLSI Design/CAD Symp., B3-1, pp. 14, CD-ROM version, Aug. 2004.
[30]A. Boni, A. Pierazzi, and D. Vecchi, “LVDS I/O interface for Gb/s-per-pin operation in 0.35-μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 706-711, Apr. 2001.
[31]R. F. Pierret, Semiconductor Device Fundamentals. Reading, MA: Addison-Wesley, 1996.
[32]P. E. Allen and D. Holberg, “CMOS Analog Circuit Design 2nd” New York; Oxford Univ. Press, ISBN 0-19-511644-5, 2002.
[33]R. Jacob Baker, Herry W. Li, and David E. Boyce, “CMOS Circuit Design, Layout, and Simulation,” IEEE Press, ISBN 0-7803-3416-7, 1998.
[34]C.-C Wang, G.-N. Sung, P.-C. Chen, “A transceiver design for ECU nodes in FlexRay-based automotive communication systems,” in Proc. Int. Conf. Consumer Electronics (ICCE), pp. 311-312, Jan. 2008.
[35]J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, Nov. 1996.
[36]A. Maxim, R. K. Poorfard, R. A. Johnson, P. J. Crawley, J. T. Kao, Z. Dong, M. Chennam, T. Nutt, and D. Trager, “A fully integrated 0.13- μm CMOS digital low-IF DBS satellite tuner using a ring oscillator-based frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 967-982, May 2007.
[37]C. Hu et al., BSIM 3.3.2 User’s Manual. Berkeley, CA: Univ. California, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔