(3.237.20.246) 您好!臺灣時間:2021/04/15 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡雨霖
研究生(外文):Yu-Lin Tsai
論文名稱:以水溶液沉積法成長氧化鋅一維奈米結構
論文名稱(外文):Zinc Oxide One-dimensional Nanostructures Prepared with Aqueous Solution
指導教授:李明逵
指導教授(外文):Ming-Kwei Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:93
中文關鍵詞:奈米結構水溶液沉積法氧化鋅
外文關鍵詞:NanostructureAqueous solutionZnO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究將利用水溶液沉積法將氧化鋅一維奈米結構成長於氮化鎵基板上,並使用不同的參數與化學溶液形成奈米柱、奈米尖端、奈米管等三種一維奈米結構。藉由笑氣的低溫回火提高氧化鋅奈米結構的紫外光激發並改善結晶構造,減少缺陷。由於氧化鋅奈米結構需生長於晶格常數差異較小的基板上,故可供使用的基板有限,通常選用氮化鎵為基板,本研究中用濺鍍法成長緩衝層,如此,我們可以不受限制將氧化鋅奈米柱成長在各種基板上,如: 應用最廣泛的矽、透明玻璃及熱門的軟性電子塑膠基板等。緩衝層的濺鍍也可應用於選擇性成長。並將具有不平整表面的奈米尖端應用於蓮花效應以及利用奈米管與奈米尖端做光催化的比較。
In this study, we prepare the zinc oxide one-dimensional nanostructures with aqueous solution on GaN substrate. The morphologies of nanotip, nanorod and nanotube are formed with different modulation and chemical solutions. The thermal annealing with N2O ambiance at 300 °C for 1 hr increase the UV emission and decrease the defects. The limit of choosing the substrate to grow ZnO nanostructures is lattice mismatch between ZnO and substrate. The buffer layer is sputtered on substrate to remove the limit. The pattern of buffer layer also can be used for selective area growth. Nanotip structure with rough surface shows the obvious lotus effect and nanotube structure with more active site and more surface area shows the better photocatalysis efficiency than nanotip structure.
Chapter 1 1
Introduction 1
1.1 Effects of nanostructure on material 1
1.2 Introduction of ZnO and ZnO one-dimensional nanostructures 2
1.3 Advantages of aqueous solution Deposition (ASD) 4
1.4 Motivation 5
References 14
Chapter 2 17
Experiments 17
2.1 Choosing substrate 17
2.2 Deposition process 17
GaN wafer cleaning procedures 18
Upside down process 18
2.3 Basic Mechanism 18
Nanotip structure 19
Nanorod structure 19
Nanotube structure 20
2.4 Characterization 21
Scanning electron microscopy 21
X-ray diffraction 21
Transmission electron microscopy 22
Fourier-transform infrared spectrometer 22
Electron spectroscopy for chemical analysis 23
Photoluminescence 23
Cathodoluminescence 25
References 34
Chapter 3 35
Result and Discussion 35
3.1 ZnO nanotip structure 35
3.2 ZnO nanorod structure 37
3.3 ZnO nanotube structure 41
3.4 Annealing with N2O 42
3.5 Sonication before ASD 44
3.6 Buffer layer 44
3.7 Selective growth 45
3.8 Simple applications for ZnO nanostructures 45
References 76
Chapter 4 78
Conclusions 78
chapter 1
1.Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Nanobelts of Semiconducting Oxides, Science (2001) 291, 1947.
2.Zhong Lin Wang, Nanostructures of zinc oxide, Materials Today, 2004
3.D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, ZnO: growth ,doping and processing, materialstoday june 2004 P34~40
4.S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, vol. 50, pp. 294-340, 2005.
5.Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan, Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang,, Room-Temperature Ultraviolet Nanowire Nanolasers, SCIENCE VOL 292 8 JUNE 2001
6.R. L. Hoffman, B. J. Norris and J. F. Wager, ZnO-based transparent thin-film transistors, APPLIED PHYSICS LETTERS VOLUME 82, NUMBER 5
7.Chin-Cheng Hsu, N.L. Wu, Synthesis and photocatalytic activity of ZnO/ZnO2 composite, Journal of Photochemistry and Photobiology A: Chemistry 172 (2005) 269–274
8.Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, APPLIED PHYSICS LETTERS VOLUME 84, NUMBER 18
9.Brent A. Buchine, William L. Hughes, F. Levent Degertekin, and Zhong L. Wang, Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts, NANO LETTERS 2006 VOL.6 1155-1159
10.J B Baxter, AMWalker, K vanOmmering and E S Aydil, Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells, Nanotechnology 17 (2006) S304–S312
11.Ilan Shalish, Henryk Temkin, and Venkatesh Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, PHYSICAL REVIEW B 69, 245401 (2004)
12.Zhiyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, and Evan C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, APPLIED PHYSICS LETTERS 89, 213110 2006
13.Wei Chen, Xiaoming Tao, Yuyang Liu, Xiaohong Sun, Zhigang Hu, Bin Fei, Applied Surface Science 252 (2006) 8683–8687
14.Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
15.Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
16.Xianghua Kong, Xiaoming Sun, Xiaolin Li, Yadong Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
17.Sungyeon Kim, Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
18.Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
19.Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho, Dong Jun Park and Jeong Yong Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
20.Ying He, Wenbin Sang, Jun’an Wang, Ruofeng Wu, Jiahua Min, Vertically well-aligned ZnO nanowires generated with self-assembling polymers, Materials Chemistry and Physics 94 (2005) 29–33
21.Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’ol, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-drivenammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
22.S. Music, S. Popovic, M. Maljkovic, D. Dragcevic, Influence of synthesis procedure on the formation and properties of zinc oxide, Journal of Alloys and Compounds 347 (2002) 324–332

chapter 2
1.Zhuo Wang, Xue-feng Qian,_ Jie Yin, and Zi-kangZhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
2.Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
3.Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
4.A Wei, X WSun, C X Xu, Z L Dong, Y Yan1, S T Tan and W Huang, Growth mechanism of tubular ZnO formed in aqueous solution, Nanotechnology 17 (2006) 1740–1744.
5.J. Goldstein, D. Newbury, D. joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael, scanning electron microscopy and X-ray microanalysis

chapter 3
1.Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth 203 (1999) 186~196
2.G. S. Kim, S. G. Ansari, H. K. Seo, Y. S. Kim, and H. S. Shin, Growth and morphological study of zinc oxide nanoneedles grown on the annealed titanate nanotubes using hydrothermal method, JOURNAL OF APPLIED PHYSICS 102, 084302 2007
3.Po-Yi Wu, Jenna Pike, Feng Zhang, and Siu-Wai Chan, Low-Temperature Synthesis of Zinc Oxide Nanoparticles, Int. J. Appl. Ceram. Technol., 3 [4] 272–278 (2006)
4.Quanchang Li, Vageesh Kumar, Yan Li, Haitao Zhang, Tobin J. Marks, and Robert P. H. Chang, Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions, Chem. Mater. 2005, 17, 1001-1006
5.AWei, XWSun, C X Xu, Z L Dong, Y Yang, S T Tan and WHuang, Growth mechanism of tubular ZnO formed in aqueous solution, Nanotechnology 17 (2006) 1740–1744
6.Xiangdong Gao, Xiaomin Li, and Weidong Yu, Flowerlike ZnO Nanostructures via Hexamethylenetetramine-Assisted Thermolysis of Zinc-Ethylenediamine Complex, J. Phys. Chem. B 2005, 109, 1155-1161
7.Hui Zhang, Deren Yang, Dongshen Li, Xiangyang Ma, Shenzhong Li, and Duanlin Que, Controllable Growth of ZnO Microcrystals by a Capping-Molecule-Assisted Hydrothermal Process, Crystal Growth & Design, Vol. 5, No. 2, 2005 547-550
8.Qingjiang Yu, Cuiling Yu, Haibin Yang,* Wuyou Fu, Lianxia Chang, Jing Xu, Ronghui Wei, Hongdong Li, Hongyang Zhu, Minghui Li, and Guangtian Zou, Growth of Dumbbell-like ZnO Microcrystals under Mild Conditions and their Photoluminescence Properties, Inorganic Chemistry, Vol. 46, No. 15, 2007
9.W. S. Lau, P. W. Qian, N. P. Sandler, K. A. McKinley, and P. K. Chu, “Evidence that N2O is a stronger oxidizing agent than O2 for the post-deposition annealing of Ta2O5 on Si capacitors,” Jpn. J. Appl. Phys., vol 36, pp. 661-666, 1997
10.S. Yamazaki, N. Takemura, Y. Yoshinaga and A. Yoshida, Journal of photochemistry and photobiology A: Chemistry 161 (2003) 57-60
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔