(18.204.2.190) 您好!臺灣時間:2021/04/22 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:薛恩溢
研究生(外文):En-Yi Shueh
論文名稱:電子束蒸鍍法鍍製AZO多層膜鏡片之研究
論文名稱(外文):Study of AZO Multilayer Coatings on Glasses by Electron Beam Evaporation
指導教授:陳英忠
指導教授(外文):Y.C. Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:電子束蒸鍍系統氧化鋅鋁多層膜
外文關鍵詞:Electron Beam EvaporationAZOMultilayer Coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用電子束蒸鍍系統鍍製AZO薄膜,分別在不同氧工作壓力及不同基板溫度條件下鍍製薄膜。AZO薄膜特性分別以四點探針、紫外線光譜儀、SEM及AFM量測並對薄膜微結構和光電性質做探討。最後設計多層膜鏡片,並以AZO取代ITO導電薄膜,鍍製抗輻射多層膜鏡片。
鍍製AZO薄膜於氧工作壓1×10-4 Torr、基板溫度80℃下,量測薄膜之電阻係數為9.2×10-4 Ω-cm,波長510nm之折射率為2.05,可見光區域透光度可達到83%以上。
鍍製AZO於多層膜鏡片之研究方面,在腔體壓力5.0×10-5 Torr,離子鎗工作壓力6.0×10-5 Torr、氧流量36 sccm、基板溫度80℃、離子鎗電壓6.2V時,可見光區域鏡片透光率可達94%以上。
In this study, the AZO thin films were deposited with various manufacturing conditions, such as working pressure of oxygen and substrate temperature, by e-beam evaporation. The microstructure of the AZO film was observed by SEM and AFM. Sheet resistance was measured using four-point probe method. Optical transmittance was measured in the visible range by UV spectrophotometer. Finally, AZO transparent film was used as a substitute for ITO to fabricate the radiation-resistant glasses.
The optimum parameters for depositing AZO films are glass substrates of 80℃ and working pressure of 1×10-4 Torr. The film resistance is 9.2×10-4 Ω-cm with a film thickness of 60 nm. The refractive index was measured to be 2.05 at a wavelength of 510 nm. The optical transmittance of the prepared films was above 83 % in the visible range.
The manufacturing conditions for depositing AZO multilayer coatings are working pressure of 5.0×10-5 Torr, ion gun working pressure of 6.0×10-5 Torr, voltage of 6.2 V, oxygen gas flow rate of 36 sccm and glass substrates of 80℃. The optical transmittance of the glass was above 94 % in the visible range.
目錄 III
圖表目錄 V
第一章 前言 1
第二章 理論分析 4
2.1光學薄膜理論 4
2.1.1基本理論 4
2.1.2 膜矩陣 6
2.1.3導納軌跡圖與抗反射膜 9
2.2電子束蒸鍍系統 12
2.2.1系統構造 12
2.2.2系統原理 13
2.2.3電子束蒸鍍系統之優缺點 14
2.3 材料特性 15
第三章 實驗 17
3.1 實驗流程 17
3.2 AZO靶材 17
3.3 鍍膜設備 18
3.4 玻璃清潔與準備 19
3.5 薄膜特性分析 20
3.5.1掃瞄式電子顯微鏡分析 20
3.5.2 原子力測量顯微鏡分析 20
3.5.3 光學性質量測 20
3.5.4 薄膜電性量測 21
3.6多層膜光學鏡片製作 21
第四章 實驗結果與討論 24
4.1薄膜結構觀察 24
4.1.1 SEM分析: 24
4.1.2 AFM分析: 25
4.2 鍍膜速率 26
4.3薄膜透光率光譜圖之分析 27
4.4薄膜電性分析 28
4.5薄膜折射率 28
4.6多層膜鏡片鍍製與測試 29
第五章 結論 31
參考文獻 33

圖表目錄
圖2-1 單層膜和基板介面示意圖 37
圖2-2 單層膜之等效導納 38
圖2-3多層膜簡化單一等效介面示意圖 39
圖2-4 等效導納示意圖 40
圖2-5光學鍍膜技術 41
圖2-6電子鎗構造示意圖 42
圖2-7 ZnO結構示意圖 43
圖3-1實驗流程圖 44
圖3-2電子束蒸鍍系統 45
圖3-3四點探針示意圖 46
圖3-4多層膜堆疊設計圖 46
圖4-1氧工作壓1×10-3 Torr,不同基板溫度,AZO薄膜之SEM 圖 47
圖4-2氧工作壓1×10-4 Torr,不同基板溫度,AZO薄膜之SEM圖 48
圖4-3氧工作壓1×10-3 Torr,基板溫度23℃,AZO薄膜之 AFM圖 49
圖4-4氧工作壓1×10-3 Torr,基板溫度50℃,AZO薄膜之 AFM圖 50
圖4-5氧工作壓1×10-3 Torr,基板溫度80℃,AZO薄膜之AFM圖 51
圖4-6氧工作壓1×10-3 Torr,基板溫度110℃,AZO薄膜之 AFM圖 52
圖4-7氧工作壓1×10-4 Torr,基板溫度23℃,AZO薄膜之 AFM圖 53
圖4-8氧工作壓1×10-4 Torr,基板溫度50℃,AZO薄膜之 AFM圖 53
圖4-9氧工作壓1×10-4 Torr,基板溫度80℃,AZO薄膜之AFM圖 54
圖4-10氧工作壓1×10-4 Torr,基板溫度110℃,AZO薄膜之AFM圖 54
圖4-11 AZO薄膜基板溫度與鍍膜速率關係圖 55
圖4-12氧工作壓1×10-3 Torr,不同基板溫度 AZO薄膜與ITO玻璃透光率光譜圖 56
圖4-13氧工作壓1×10-4 Torr,不同基板溫度下, AZO薄膜與ITO玻璃透光率光譜圖 57
圖4-14基板溫度23℃,不同氧工作壓下, AZO薄膜透光率光譜圖 58
圖4-15基板溫度50℃,不同氧工作壓下, AZO薄膜透光率光譜圖 59
圖4-16基板溫度80℃,不同氧工作壓下, AZO薄膜透光率光譜圖 60
圖4-17基板溫度110℃,不同氧工作壓下, AZO薄膜透光率光譜圖 61
圖4-18氧工作壓1×10-4 Torr,不同基板溫度下, AZO薄膜之電阻係數 62
圖4-19氧工作壓1×10-4 Torr,不同基板溫度下, AZO薄膜之電阻係數 63
圖4-20 AZO薄膜折射率與基板溫度關係 64
圖4-21多層膜鏡片導納軌跡圖 65
圖4-22多層膜鏡片透光率模擬圖 66
圖4-23不同離子鎗電壓,AZO多層膜鏡片與市售鏡片透光率光譜圖 67
表一常用金屬氧化物材料基本特性 68
表二 ZnO基本物理性質 69
表三AZO多層膜鍍製參數 70
表四 AZO多層膜鏡片耐磨測試 72
表五AZO多層膜鏡片化學穩定度測試 72
[1]李正中,薄膜光學與鍍膜技術,五版,藝軒出版社,臺北市,2006年。
[2]H.A. Macleod, Thin Film Optical Filters, 3rded., McGraw Hill, NewYork, 2001.
[3]真空技術與應用,國家實驗研究院儀器科技研究中心出版,2004
[4]G.J. Exarhos, X.-D. Zhou, “Discovery-based design of transparent conducting oxide films”, Thin Solid Films, vol. 515, pp. 7025-7052, 2007.
[5]T. Minami, “Transparent conducting oxide semiconductors for Transparentelectrodes”, Semicond. Sci. Technol. pp. S35-S44, 2005.
[6]B. Rech, H. Wagner, “Potential of Amorphous Silicon for Solar Cells,” Appl. Phys., pp. 155-167, 1999.
[7]M. Katayama, “TFT-LCD technology ” Thin Solid Films, vol. 341, pp. 140-147, 1999.
[8]L. Raniero, I. Ferreira, A. Pimentel, A. GonÃÃalves, P. Canhola, E. Fortunato, R. Martins, “Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings,” Thin Solid Films, pp. 295-298, 2006.
[9]D.R. Sahu, S.Y. Lin and J.L. Huang, “Improved properties of Al-doped ZnO film by electron beam evaporation technique”, Microelectronics Journal, vol. 38, pp. 245-250, 2007.
[10]
Ruske, V. Sittinger, W. Werner, B. Szyszka, K.-U. van Osten, K. Dietrich and R. Rix, “Hydrogen doping of DC sputtered ZnO:Al films from novel target material” Surface and Coatings technology, vol. 2000, pp. 236-240, 2005.
[11]

G.J. Exarhos, X.D. Zhou, “Discovery-based design of transparent conducting oxide films”, Thin Solid Films, vol. 515, pp. 7025-7052, 2007.
[12].
E. Burstein, “Anomalous Optical Absorption Limit in InSb” Phys.
Rev., vol. 93, pp. 632, 1954
[13]GfE Metalle und Materialien GmbH, “ZnO/Al2O3 for Transparent Conductive Oxide Layers”.
[14]GfE Metalle und Materialien GmbH, “Transparent Conductive Oxides”.
[15]吳坤陽,“溶凝膠法製備含銀之AZO透明導電膜的研究”,國立成功大學化學工程學系碩士論文,2005。
[16]林素霞,“氧化鋅薄膜的特性改良及應用之研究”,國立成功大學材 料及工程研究所博士論文,2003。
[17]林士淵, “以電子束蒸鍍技術製作之AZO/Ag/AZO多層膜的光電性質研究”,國立成功大學材料及工程學系碩士論文,2006。
[18]P.T. Hsieh, Y.C. Chen, K.S. Kao, C.M. Wang, “Structural effect on UV emission properties of high-quality ZnO thin films deposited by RF magnetron sputtering”, Physica B: Condensed Matter, vol. 392, pp. 332-336, 2007.
[19]I. Sayago, M. Aleixandre, L. Arés, M.J. Fernández, J.P. Santos, J. Gutiérrez, M.C. Horrillo, “The effect of the oxygen concentration and the rf power on the zinc oxide films properties deposited by magnetron sputtering” Applied Surface Science, vol. 245, pp. 273-280, 2007.
[20]H.Z. Wu, K.M. He, D.J. Qiu, D.M. Huang, “Low-temperature epitaxy of ZnO films on Si(001) and silica by reactive e-beam evaporation”, Journal of rystal Growth, vol. 217, pp. 131-137, 2000.
[21]D. Song, P. Widenborg, W. Chin, A.G. Aberle, “Investigation of lateral parameter variations of Al-doped zinc oxide films prepared on glass substrates by rf magnetron sputtering”, Solar Energy Materials & Solar Cells, vol. 73, pp. 1-20, 2002.
[22]田春林, “光學薄膜應力與熱膨脹係數量測之研究”, 國立中央
大學光電科學研究所博士論文,2000。
[23]黃文雄, “製程參數對薄膜應力影響之研究”,國立中央大學光電科學研究所碩士論文,2001。
[24]Anthony E. Ennos, “Stresses developed in optical film coatings” , Applied Optics, vol.5, pp.51-61, 1966.
[25]W.C.Huang, J.T. Lue, “Quantum size effect on the optical properties of small metallic particles”, Physical Review vol. 49, pp. 17279-17290, 1994.
[26]B.Y. Oh, M.C. Jeong, W. Lee, J.M. Myoung, “Properties of transparent conductive ZnO:Al films prepared by co-sputtering”, Journal of Crystal Growth, vol. 274, pp. 453-457, 2005.
[27]D.J. Qiu, P. Yu, H.Z. Wu, Well-aligned ZnO nanocolumns grown by reactive electron beam evaporation, Solid State Communications vol. 134, pp. 735-739, 2005.
[28]W. Heitmann, “Properties of evaporated SiO2, SiON and TiO2 films”, Appl. Opt., vol.10, pp. 2685-2689, 1971.
[29]C. S. Hong, H. H. Park, J. Moon, H. H. Park, “Effect of Metal (Al, Ga, and In)-Dopants and/or Ag-nanoparticles on the Optical and Electrical Properties of ZnO Thin Films,” Thin Solid Films, vol. 515, pp. 957-960, 2006.
[30]B. Szyszka, “Transparent and Conductive Aluminum Doped Zinc Oxide Films Prepared by Mid-Frequency Reactive Magnetron Sputtering,” Thin Solid Films, vol. 351, pp. 164-169, 1999.
[31]Y. Igasaki, H. Saito, “Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire”, J. Appl. Phys., vol. 69, pp. 2190-2195, 1991.
[32]J. L. Vossen, “ Transparent Conducting Films ”, Physics of Thin Films, vol. 9, pp. 1-64, 1977.
[33]A.Sarkar , S. Ghosh, S.Chaudhury and A.K.Pal, "Studies on electron transport properties and Burstein-Moss shift in indium-doped ZnO films",Thin Solid Films,vol. 204, pp. 255-264, 1991.
[34]W.Water and S.Y.Chu, “ Physical and structure Properties of ZnO Sputtered Films ”, Materials Letters, vol.55, pp. 67-72, 2002.
[35]J. Y. Robic, H. Leplan, Y. Pauleau, B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition”, Thin Solid Film, vol. 290, pp. 34-39, 1996.
[36]U.S. Patent 6441964, Applied Vacuum Coating, “Anti-reflection high conductivity multi-layer coating for flat CRT products”, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔