(3.227.235.183) 您好!臺灣時間:2021/04/20 08:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳俊慶
研究生(外文):Chun-Ching Wu
論文名稱:以靜電力拉伸SU-8光阻製作非球面光纖透鏡及其特性之量測
論文名稱(外文):Manufacture and Performance Evaluation of SU-8-based Non-spherical Lensed Fibers Fabricated Using Electrostatic Pulling Method
指導教授:林哲信
指導教授(外文):Che-Hsin Lin
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:光纖透鏡電場靜電力SU-8耦合效率
外文關鍵詞:lensed fiberelectrostatic forceelectric fieldSU-8coupling efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在傳統的光纖耦合技術上,光纖耦合器有著體積龐大、組裝不易等問題,而部分的光纖透鏡製造技術,雖然可以有效地降低光學系統的複雜性,並提高光纖與光源間的耦合效率,但也面臨無法量產、設備昂貴、製作耗時等缺點。有鑑於此,本研究提出一套低成本、可大量生產的光纖透鏡製程,其利用SU-8光阻為透鏡材料,藉由表面張力在漸變折射率的塑膠光纖(外徑=500 μm)及單模玻璃光纖上(外徑=125 μm),形成一個半球狀的微透鏡結構。再將此半球狀微透鏡的溫度維持在SU-8的玻璃轉換溫度(Tg)以上,在均勻電場的作用下,透過靜電力的拉伸而形成非球面狀的微透鏡。微透鏡的曲率半徑可在靜電力拉伸的過程中,透過施加不同電場強度予以控制。本研究並量測SU-8光阻的光譜特性,以驗證SU-8材料適合光學透鏡製作。量測結果顯示,SU-8在可見光至近紅外光波段(380 nm至1600 nm)的光穿透特性極佳。此外,SEM顯示成型後之微透鏡具有良好的表面平滑度,其有利於光纖光學性能的提升。本研究亦透過光學軟體ZEMAX®,來模擬光纖透鏡之光束傳播路徑,模擬結果顯示與利用雷射光在螢光染劑中所激發之實驗光束路徑一致。
為評估所製作之光纖透鏡效能,本研究以波長為1310 nm 的Fabry-Perot雷射晶片,與光纖透鏡進行耦光。量測結果顯示,塑膠光纖透鏡的耦合效率,在工作距離為90 μm時,有效地提高至78% (R=48 μm),相較於平端光纖高出近2倍。玻璃光纖透鏡的耦合效率在工作距離為24 μm時,提高至72% (R=23 μm),相較於平端光纖高出2.3倍。本研究提出以靜電力拉伸製作光纖透鏡的技術,不僅改善了部分光纖耦合技術的製程複雜、無法量產等缺點,並能有效地降低成本,且達到提升光纖耦合效率的目的,相當具商業化的潛力。
This paper proposed a low-cost and high-throughput method to fabricate lensed optical fibers. SU-8 Photoresist is used as the material for fabricating the proposed lens structure and is directly applied on two kinds of optical fiber tip, single mode glass fibers (O.D.=125 μm) and plastic graded-index plastic fiber (O.D.=500 μm), utilizing surface tension force to form a hemi-circular shape lens structure. The hemi-circular shape SU-8 lens is then electrostatically pulled to form non-spherical shape in an uniform electric field at a temperature higher than the glass temperature (Tg) of SU-8. Microlens with various radius of curvature can be easily produced by tuning the applied electric fields during the electrostatic pulling process. In addition, this study also measures the UV-Vis-NIR spectrum SU-8 photoresist to confirm the optical property of SU-8. Results indicate the SU-8 has high optical transmittance from the wavelength range of 380-1600 nm. SEM observation also indicates the fabricated SU-8 microlens has excellent surface smoothness which is essential for optical applications. A commercial optical simulation software of ZEMAX® is used to predict the light path of the fabricated lensed fiber. The numerical results show good agreement with the experimental test obtained by projecting laser light into a diluted fluorescence solution.
Furthermore, a Fabry-Perot laser chip with the wavelength of 1310 nm is used for light coupling test for the fabricated lensed fibers. Results show the coupling efficiency is up to 78% at working distance of 90 μm while using the plastic lensed fiber (R =48 μm), which is around 2 fold higher than that of a flat-end fiber. The coupling efficiency of glass lensed fiber (R =23 μm) is up to 72% at working distance of 24 μm, which is around 2.3 fold higher than that of a flat-end fiber. The proposed method is feasible of producing high-quality lensed optical fiber in a high throughput and low-cost way. The method proposed in the current study may give substantial impacts on fabricating lensed fiber in the future.
目錄 I
圖目錄 IV
表目錄 VII
簡寫表 VIII
符號表 X
摘要 XI
Abstract XIII
第一章 緒論 1
1.1 前言 1
1.2 光纖的分類 4
1.2.1 依材料區分 4
1.2.2 依模態區分 5
1.3 光纖透鏡結構 8
1.4 文獻回顧 9
1.4.1 透鏡組裝式之光纖耦合技術 10
1.4.2 光纖透鏡式之光纖耦合技術 11
1.5 研究動機與目的 19
1.6 論文架構 20
第二章 理論分析 22
2.1 光纖通信用光源簡介 22
2.2 模態匹配與耦合理論 23
2.2.1高斯光束(Gaussian beam) 23
2.2.2 模態匹配(Mode matching) 24
2.2.3 耦合效率分析 26
2.3 庫侖定律與靜電力 29
2.3.1 庫侖定律與電場強度 29
2.3.2 靜電力拉伸理論 31
2.3.3 實驗操作概念 33
第三章 光纖微透鏡之製作及其特性量測 35
3.1 SU-8光阻簡介 35
3.2光纖透鏡製程 37
3.4 光學性質之量測 44
3.4.1 光纖聚焦之量測架構 44
3.4.2 光束路徑傳播之量測架構 45
3.4.3 光束路徑傳播之模擬方法 46
3.4.4 耦合效率之量測架構 47
第四章 結果與討論 49
4.1 SEM探討 49
4.2 透鏡曲率與電場關係 50
4.3 光纖聚焦之量測結果 53
4.4 光束路徑傳播之量測與模擬結果 55
4.5 耦合效率之量測結果 56
第五章 結論與未來展望 61
5.1 結論 61
5.2 未來展望 62
參考文獻 63
自述 67
[1] G. Keiser, Optical Fiber Communications, third ed, McGraw-Hill,
2000.
[2] 李銘淵, 光纖通信概論, 全華科技圖書股份有限公司, 2005.
[3] T. Ishigure, E. Nihei, and Y. Koike, "Graded-Index Polymer
Optical-Fiber for High-Speed Data Communication," Applied
Optics, vol. 33, pp. 4261-4266, 1994.
[4] D. L. Franzen, "Determining the Effective Cutoff Wavelength of
Single-Mode Fibers - an Interlaboratory Comparison," Journal of
Lightwave Technology, vol. 3, pp. 128-134, 1985.
[5] L. G. Cohen and M. V. Schneider, "Microlenses for Coupling
Junction Lasers to Optical Fibers," Applied Optics, vol. 13, pp.
89-94, 1974.
[6] M. Sumida and K. Takemoto, "Lens Coupling of Laser-Diodes to
Single-Mode Fibers," Journal of Lightwave Technology, vol. 2, pp.
305-311, 1984.
[7] R. G. Wilson, "Ball-lens coupling efficiency for laser-diode to
single-mode fiber: comparison of independent studies by distinct
methods," Applied Optics, vol. 37, pp. 3201-3205, 1998.
[8] M. He, J. Bu, B. H. Ong, and X. Yuan, "Two-microlens coupling
scheme with revolved hyperboloid sol-gel microlens arrays for
high-power-efficiency optical coupling," Journal of Lightwave
Technology, vol. 24, pp. 2940-2945, 2006.
[9] S. Y. Huang, C. E. Gaebe, K. A. Miller, G. T. Wiand, and T. S.
Stakelon, "High coupling optical design for laser diodes with large
aspect ratio," IEEE Transactions on Advanced Packaging, vol. 23,
pp. 165-169, 2000.
[10] H. Kuwahara, M. Sasaki, and N. Tokoyo, "Efficient Coupling from
Semiconductor-Lasers into Single-Mode Fibers with Tapered
Hemispherical Ends," Applied Optics, vol. 19, pp. 2578-2583,
1980.
[11] A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, "Efficient
coupling between laser diodes with a highly elliptic field and
single-mode fibers by means of GIO fibers," IEEE Photonics
Technology Letters, vol. 13, pp. 1191-1193, 2001.
64
[12] K. Shiraishi, H. Yoda, T. Endo, and I. Tomita, "A lensed GIO fiber
with a long working distance for the coupling between laser diodes
with elliptical fields and single-mode fibers," IEEE Photonics
Technology Letters, vol. 16, pp. 1104-1106, 2004.
[13] H. Yoda and K. Shiraishi, "A new scheme of a lensed fiber
employing a wedge-shaped graded-index fiber tip for the coupling
between high-power laser diodes and single-mode fibers," Journal
of Lightwave Technology, vol. 19, pp. 1910-1917, 2001.
[14] S. M. Yeh, S. Y. Huang, and W. H. Cheng, "A new scheme of
conical-wedge-shaped fiber endface for coupling between
high-power laser diodes and single-mode fibers," Journal of
Lightwave Technology, vol. 23, pp. 1781-1786, 2005.
[15] G. Eisenstein and D. Vitello, "Chemically Etched Conical
Microlenses for Coupling Single-Mode Lasers into Single-Mode
Fibers," Applied Optics, vol. 21, pp. 3470-3474, 1982.
[16] T. Alder, A. Stohr, R. Heinzelmann, and D. Jager, "High-efficiency
fiber-to-chip coupling using low-loss tapered single-mode fiber,"
IEEE Photonics Technology Letters, vol. 12, pp. 1016-1018, 2000.
[17] H. M. Yang, S. Y. Huang, C. W. Lee, T. S. Lay, and W. H. Cheng,
"High-coupling tapered hyperbolic fiber microlens and taper
asymmetry effect," Journal of Lightwave Technology, vol. 22, pp.
1395-1401, 2004.
[18] H. M. Presby and C. R. Giles, "Asymmetric Fiber Microlenses for
Efficient Coupling to Elliptic Laser-Beams," IEEE Photonics
Technology Letters, vol. 5, pp. 184-186, 1993.
[19] A. J. C. Grellier, N. K. Zayer, and C. N. Pannell, "Heat transfer
modelling in CO2 laser processing of optical fibres," Optics
Communications, vol. 152, pp. 324-328, 1998.
[20] H. Sakata and A. Imada, "Lensed plastic optical fiber employing
concave end filled with high-index resin," Journal of Lightwave
Technology, vol. 20, pp. 638-642, 2002.
[21] K. R. Kim, S. L. Chang, and K. Oh, "Refractive microlens on fiber
using UV-curable fluorinated acrylate polymer by surface-tension,"
IEEE Photonics Technology Letters, vol. 15, pp. 1100-1102, 2003.
[22] J. K. Kim, D. U. Kim, B. H. Lee, and K. Oh, "Arrayed multimode
fiber to VCSEL coupling for short reach communications using
hybrid polymer-fiber lens," IEEE Photonics Technology Letters,
vol. 19, pp. 951-953, 2007.
65
[23] K. Sambanthan and F. A. Rahman, "Method to improve the
coupling efficiency of a hemispherically lensed asymmetric
tapered-core fiber," Optics Communications, vol. 254, pp. 112-118,
2005.
[24] J. T. Horng and D. C. Chang, "Coupling an Elliptical
Gaussian-Beam into a Multimode Step-Index Fiber," Applied
Optics, vol. 22, pp. 3887-3891, 1983.
[25] W. B. Joyce and B. C. Deloach, "Alignment-Tolerant Optical-Fiber
Tips for Laser Transmitters," Journal of Lightwave Technology, vol.
3, pp. 755-757, 1985.
[26] C. A. Edwards, H. M. Presby, and C. Dragone, "Ideal Microlenses
for Laser to Fiber Coupling," Journal of Lightwave Technology, vol.
11, pp. 252-257, 1993.
[27] S. Gangopadhyay and S. Sarkar, "ABCD matrix for reflection and
refraction of Gaussian light beams at surfaces of hyperboloid of
revolution and efficiency computation for laser diode to
single-mode fiber coupling by way of a hyperbolic lens on the fiber
tip," Applied Optics, vol. 36, pp. 8582-8586, 1997.
[28] L. A. Wang and C. D. Su, "Tolerance analysis of aligning an
astigmatic laser diode with a single-mode optical fiber," Journal of
Lightwave Technology, vol. 14, pp. 2757-2762, 1996.
[29] W. T. Chen and L. A. Wang, "Out-of-plane optical coupling
between an elliptical Gaussian beam and an angled single-mode
fiber," Journal of Lightwave Technology, vol. 16, pp. 1589-1595,
1998.
[30] V. P. Coleta, College Physics, McGraw-Hill, 1996.
[31] G. Taylor, "Disintegration of Water Drops in an Electric Field,"
Mathematical and Physical Sciences vol. 280, pp. 383-397, 1964.
[32] O. Sandre, L. Gorre-Talini, A. Ajdari, J. Prost, and P. Silberzan,
"Moving droplets on asymmetrically structured surfaces," Physical
Review E, vol. 60, pp. 2964-2972, 1999.
[33] A. L. Yarin, S. Koombhongse, and D. H. Reneker, "Taylor cone
and jetting from liquid droplets in electrospinning of nanofibers,"
Journal of Applied Physics, vol. 90, pp. 4836-4846, 2001.
[34] 楊啟榮, 羅國軒, 黃奇聲, 強玲英, "SU-8 厚膜光阻於微系統
UV-LIGA 製程的應用", 科儀新知, 第20 卷, pp. 45-56, 1999.
66
[35] S. Arscott, F. Garet, P. Mounaix, L. Duvillaret, J. L. Coutaz, and D.
Lippens, "Terahertz time-domain spectroscopy of films fabricated
from SU-8," Electronics Letters, vol. 35, pp. 243-244, 1999.
[36] J. Hsieh, C. J. Weng, H. L. Yin, H. H. Lin, and H. Y. Chou,
"Realization and characterization of SU-8 micro cylindrical lenses
for in-plane micro optical systems," Microsystem
Technologies-Micro-and Nanosystems-Information Storage and
Processing Systems, vol. 11, pp. 429-437, 2005.
[37] "Data sheet of SU-8 (http://www.microchem.com/)."
[38] Y. Koike, T. Ishigure, and E. Nihei, "High-Bandwidth
Graded-Index Polymer Optical-Fiber," Journal of Lightwave
Technology, vol. 13, pp. 1475-1489, 1995.
[39] 王聖禾, "塑膠透鏡光纖之新型構裝方式," 國立中山大學 機械
與機電工程研究所, 碩士, 2005.
[40] Y. Z. He and F. G. Shi, "A graded-index fiber taper design for laser
diode to single-mode fiber coupling," Optics Communications, vol.
260, pp. 127-130, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔