跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 01:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡崇宣
研究生(外文):Chung-Hsuan Tsai
論文名稱:仿生多足機器人足部故障之步態研究
論文名稱(外文):Gait Algorithm of Multilegged Biomimetic Robots with Leg Failures
指導教授:何應勤
指導教授(外文):Innchyn Her
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:117
中文關鍵詞:足部故障步態規劃換腳機制
外文關鍵詞:Leg faultSwitched leg schemeGait planning
相關次數:
  • 被引用被引用:4
  • 點閱點閱:1192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
足式機器人雖然比輪式機器人更難設計與控制,然而在適應惡劣環境和跨越障礙物上卻佔有優勢。在設計機體與腳的構造之前,對步態的規劃是一件相當重要的工作。本研究的目的在於討論多足機器人於足部故障後的步態,在此所討論的機器人為對稱性的結構,每隻腳具有三個迴轉接頭。
本研究分析在不同足部故障後對運動特性之影響,並於分析結果中發現某些足部故障後,會導致機器人的步行效率下降,且穩定度會有所降低,甚至會無法繼續行走。本研究提出一種換腳機制,可使這些較差的類型,轉換成最佳的類型。最後藉由換腳機制的無段式調整特性,可將轉換後的最佳類型再更進一步提升其穩定度。
Legged robots are much difficult to design and control than wheeled robots. However, one of advantages of the legged robots is that they are move adaptable to rough terrains and the task of stepping over obstacles. The gait algorithm of a robot is an important job before components the configuration of the body and each leg. The main purpose of this thesis is to discuss leg failure in gait planning procedure for multi-legged robots with symmetric structures. The legs discussed herein are in the form of an articulated arm with three revolute joints.
Various effects on motion characteristics due to different leg faults, such as robot’s walking efficiency and stability are also investigated. On extreme conditions, the robot will cease to walk after a leg failure. In this work a scheme is proposed to transform the scrambled leg pattern to a better or even optimum configuration. This leg switching scheme can improve the stability of the robot when problematic legs are disconnected from the body.
摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 IX
符號說明 X
第一章 緒論 1
1.1.仿生多足機器人的發展 2
1.2.步態理論發展與表示方法 9
1.3.足部結構模組化 14
1.4.研究動機與目的 17
第二章 步態的基礎理論分析及動態模擬系統之建構 18
2.1.步態理論與分析 18
2.1.1.靜態穩定性 18
2.1.2.足端工作範圍 20
2.1.3.步態類型與速度之探討 23
2.2.仿生多足機器人模擬與控制系統之開發 27
2.2.1.硬體控制與指令傳輸 30
2.2.2.系統模擬與實機控制 31
2.2.3.形態改變後的運動協調 36
第三章 多足機器人足部故障之步態研究 40
3.1.機器人模型設定 41
3.2.基礎步態 42
3.2.1.一般步態 42
3.2.2.生物的斷足 44
3.3.六足卸離後的步態分析 47
3.4.卸離與鎖定之比較 51
3.5.八足卸離後的步態分析 52
第四章 換腳機制之分析與應用 59
4.1.最小軸向穩定度限制對步態的影響 59
4.2.換腳機制之設計 64
4.3.導入換腳機制於多足故障 66
4.4.無段式調整最佳化分析 68
第五章 結論與未來展望 73
參考文獻 76
附 錄 (一) 81
附 錄 (二) 82
附 錄 (三) 84
附 錄 (四) 86
附 錄 (五) 87
附 錄 (六) 91
附 錄 (七) 97
Alexander, R. M. (1989) Optimization and gaits in the locomotion of vertebrates, Physiological Reviews, 69, 1199-1227.
Altendorfer, R., N. Moore, H. Komsuoglu, M. Buehler, H. B. Brown, D. McMordie, U. Saranli, R. J. Full, D. E. Koditschek, (2001) RHex-a simple and highly mobile hexapod robot, Autonomous Robots, 11, 207-220.
Autumn, K., M. Buehler, et al. (2005) Robotics in scansorial environments, in SPIE proceedings on Unmanned Ground Vehicle Technology VII, 5804, 291-302.
Alan, B. (2006) Dynamic performance, mobility, and agility of multi-legged robots. ASME Journal of Dynamic Systems, Measurement, and Control, 128(4), 765-777.
Brady, M. Robotics Science, The MIT Press, 1989.
Brooks, R. A. (1989) A robot that walks: emergent behavior from a carefully evolved network, Neural Computation, 1(2), 253-262.
Boissonnat, J. D., O. Devillers, L. Donati, F. P. Preparata, (1992) Motion planning for spider robots, IEEE International Conference on Robotics and Automation, 3, 2321-2326.
Barnes, D. (1998) Hexapodal robot locomotion over uneven terrain, IEEE International Conference on Control Applications, 1, 441-445.
Binnard, M. (1998) Boadicea - a small, pneumatic walking robot, [Online]. Available: http://www.ai.mit.edu/projects/boadicea/boadicea.html.
Borenstein, J., G. Granosik, M. Hansen, (2005) The OmniTread serpentine robot for industrial inspection and surveillance, International Journal on Industrial Robots, Special Issue on Mobile Robots, 32(2), 139-148.
Bowling A., (2006) Dynamic performance, mobility, and agility of multi-legged robots, ASME Journal of Dynamic Systems, Measurement and Control, 128(4), 765-777.
Clark, J. E. (2004) Design, simulation, and stability of a hexapedal running robot, PhD thesis, Stanford University.
Devjanin, E., A. Lensky, V. Samsonov, L. Shtilman, (1973) Elaboration of a model of the walking vehicle and correponding control system, In V IFAC Symposium on Automatic Control in Space, Genua, Italy.
Diederich, B., M. Schumm, H. Cruse, (2002) Stick insects walking along inclined surfaces, Integrative and Comparative Biology, 42(1), 165-173.
Dudek, D. M., R. J. Full, (2006) Passive mechanical properties of legs from running insects, Journal of Experimental Biology, 209, 1502-1515.
Dupont, S., T. Pape, (2007) Fore tarsus attachment device of the male scuttle fly, Aenigmatias lubbockii, Journal of Insect Science, 7(54), 1536-2442.
English, J. D., A. A. Maciejewski, (1998) Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures, IEEE Transactions on Robotics and Automation, 14, 566-575.
English, J. D., A. A. Maciejewski, (2000) Measuring and reducing the euclidean-space effects of robotic joint failures, IEEE Transactions on Robotics and Automation, 16(1), 20-28.
Fujiu, M., Y. Hosoda, H. Maki, (1987) Development of quadruped walking mechanism, 3rd International Conference on Advanced Robotics, 65-76.
Fearing, R.S., K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti, J. Yan, (2000) Wing transmission for a micromechanical flying insect, IEEE Conference on Robotics and Automation, 2, 1509-1516.
Graham, D. (1977) The effect of amputation and leg restraint on the free walking coordination of the stick insect Carausiusmorosus, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, A 116(1), 91–116.
Griffin, T. M., R. Kram, S. J. Wickler, D. F. Hoyt, (2004) Biomechanical and energetic determinants of the walk-trot transition in horses, Journal of Experimental Biology, 207, 4215-4223.
Hildebrand, M., (1965) Symmetrical gaits of horse, Science, 150, 701-708.
Hodgins, J. (1988) Legged robots on rough terrain: experiments in adjusting step length, IEEE International Conference on Robotics and Automation, 12, 824-826.
Inagaki, K. (1997) Gait study for hexapod walking with disabled leg, International Conference on Intelligent Robots and Systems, 1, 408-413.
Junmin, P. (1994) Measurement and control of attitudes of quadruped robots, IEEE International Conference on Intelligent Robots and Systems, 2, 1332-1337.

Junzhi, Y., W. Long, M. Tan, (2005) A framework for biomimetic robot fish''s design and its realization, American Control Conference, 3, 1593- 1598.
Janrathitikarn, O. (2007) The use of a cognitive architecture to control a six-legged robot, Master Thesis, The Pennsylvania State University.
Kram, R., B. Wong, R. J. Full, (1997) Three dimensional kinematics and limb kinetic energy of running cockroaches, Journal of Experimental Biology, 200, 1919-1929.
Klaassen, B., R. Linnemann, D. Spenneberg, F. Kirchner, (2001) Biomimetic walking robot scorpion: control and modeling, Special Issue of the Robotics and Autonomous Systems journal.
Kesel, A. B., A. Martin, T. Seidl, (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods, Smart Materials & Structures, 13(3), 512-518.
Lewis, M. A., A. H. Fagg, G. Bekey, (1994) Genetic algorithms for gait synthesis in a hexapod robot, Recent Trends in Mobile Robots, 317-331.
Lee, Y. J., S. Hirose, (2000) Three-legged walking for fault tolerant locomotion of a quadruped robot with demining mission, International Conference on Intelligent Robots and Systems, 973-978.
McGhee, R. B., A. A. Frank, (1968) On the stability properties of quadruped creeping gaits, Mathematical Biosciences, 3, 331-351.
McGhee, R. B., G. I. Iswandhi, (1979) Adaptive locomotion of a multi-legged robot over rough terrain, IEEE Transactions on Systems, Man, and Cybernetics, 9(4), 176-182.
Mark, A. L., (1993) Implementation of adaptive behaviors in a simple insect-like robot, Masters Thesis, Carleton University, Ottawa, Canada.
Ozguner, F., S. J. Tsai, R. B. McGhee, (1984) An approach to the use of terrain-preview information in rough terrain locomotion by a hexapod walking machine, International Journal of Robotics Research, 3(2), 134-146.
Oricom Technologies, (2003) Analysis of Multi-Legged Animal, [Online]. Available: http://www.oricomtech.com/projects/leg-time.htm.
Parry, D. A., R. H. Brown, (1959) The jumping mechanism of salticid spiders, Journal of Experimental Biology, 36, 654-664.
Pfeiffer, F., H. J. Weidemann, P. Danowski, (1991) Dynamics of the walking stick insect, IEEE Control Systems Magazine, 9-13.
Pal, P. K., K. Jayarajan, (1991) Generation of free gait - a graph search approach, IEEE Transactions on Robotics and Automation, 7(3), 299-305.
Parker, G. B., (1998) Generating arachnid robot gaits with cyclic genetic algorithms, Third Annual Genetic Programming Conference, 576-583.
Paul, J., W. Gronenberg, (1999) Optimizing force and velocity: mandible muscle fiber attachments in ants, Journal of Experimental Biology, 202, 797-808.
Pal, P. K., D. C. Kar, (2000) Gait optimization through search, The International Journal of Robotics Research, 19(4), 394-408.
Prahacs, C., A. Saunders, M. K. Smith, D. McMordie, M. Buehler, (2005) Towards legged amphibious mobile robotics, Journal Engineering Design and Innovation, 1, part. 01P3. [online]. Available: www.cden.ca/JEDI/index.html.
Russell, M. (1983) Odex 1: the first functionoid, Robotics Age, 5(5), 12-18.
Ritzmann, R. E., R. D. Quinn, M. S. Fischer, (2004) Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots, Arthropod Structure and Development, 33(3), 361-379.
Song, S. M., B. S. Choi, (1989) A study on continuous follow-the-leader (FTL) gaits: an effective walking algorithm over rough terrain, Mathematical Biosciences, l(97), 199-233.
Shih, C. L., C. A. Klein, (1993) An adaptive gait for legged walking machines over rough terrain, IEEE transactions on systems, man, and cybernetics, 23(4), 1150-1155.
Schroer, R. T., M. Boggess, R. J. Bachmann, R. D. Quinn, R. E. Ritzmann, (2004) Comparing cockroach and whegs robot body motions, IEEE Conference on Robotics and Automation, 4, 3288-3293.
Srinivasan, M., A. Ruina, (2006) Computer optimization of a minimal biped model discovers walking and running, Nature, 439, 72-75.
Scarfogliero, U., C. Stefanini, P. Dario, (2007) Design and development of the long-jumping ”Grillo” mini robot, IEEE International Conference on Robotics and Automation, 467-472.
Taylor, C. R. (1978) Why change gaits? recruitment of muscles and muscle fibers as a function of speed and gait, American Zoologist, 18(1), 153-161.
Wilson, D. (1966) Insect walking, Annual Review of Entomology, 11.
Ward, D. V. (1969) Leg extension in limulus, Biological Bulletin, 136(2), 288-300.
Wettergreen, D., H. Pangels, J. Bares, (1995) Behavior-based gait execution for the dante ii walking robot, IEEE International Conference on Intelligent Robots and Systems, 3, 274-279.
Yang, J. M., J. H. Kim, (1998) Fault-tolerant locomotion of the hexapod robot, IEEE transactions on systems, man, and cybernetics, B 28, 109-116.
Yamada, T., K. Tanaka, M. Yamakita, (2003) Winding and task control of snake like robot, SICE Annual Conference in Fukui, 3, 2138-2142.
Yang, J. M. (2005) Tripod gaits for fault tolerance of hexapod walking machines with a locked joint failure, Robotics and Autonomous Systems, 52, 180-189.
朱耀沂,蜘蛛博物學,大樹文化,2003。
林寬禮,王湔木牛流馬之改進設計,國立成功大學機械研究所碩士論文,1995。
陳柏宏,四連桿與六連桿型木車馬之機構設計,國立成功大學機械研究所碩士論文,1997。
陳學東,多足步行機器人運動規劃與控制,華中科技大學出版社,2006。
黃啟育,模組化4+2足步行機械步態規劃,國立中山大學機械研究所碩士論文,2001。
許樹淵,運動生物力學,合記圖書出版社,1997。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top