Alexander, R. M. (1989) Optimization and gaits in the locomotion of vertebrates, Physiological Reviews, 69, 1199-1227.
Altendorfer, R., N. Moore, H. Komsuoglu, M. Buehler, H. B. Brown, D. McMordie, U. Saranli, R. J. Full, D. E. Koditschek, (2001) RHex-a simple and highly mobile hexapod robot, Autonomous Robots, 11, 207-220.
Autumn, K., M. Buehler, et al. (2005) Robotics in scansorial environments, in SPIE proceedings on Unmanned Ground Vehicle Technology VII, 5804, 291-302.
Alan, B. (2006) Dynamic performance, mobility, and agility of multi-legged robots. ASME Journal of Dynamic Systems, Measurement, and Control, 128(4), 765-777.
Brady, M. Robotics Science, The MIT Press, 1989.
Brooks, R. A. (1989) A robot that walks: emergent behavior from a carefully evolved network, Neural Computation, 1(2), 253-262.
Boissonnat, J. D., O. Devillers, L. Donati, F. P. Preparata, (1992) Motion planning for spider robots, IEEE International Conference on Robotics and Automation, 3, 2321-2326.
Barnes, D. (1998) Hexapodal robot locomotion over uneven terrain, IEEE International Conference on Control Applications, 1, 441-445.
Binnard, M. (1998) Boadicea - a small, pneumatic walking robot, [Online]. Available: http://www.ai.mit.edu/projects/boadicea/boadicea.html.
Borenstein, J., G. Granosik, M. Hansen, (2005) The OmniTread serpentine robot for industrial inspection and surveillance, International Journal on Industrial Robots, Special Issue on Mobile Robots, 32(2), 139-148.
Bowling A., (2006) Dynamic performance, mobility, and agility of multi-legged robots, ASME Journal of Dynamic Systems, Measurement and Control, 128(4), 765-777.
Clark, J. E. (2004) Design, simulation, and stability of a hexapedal running robot, PhD thesis, Stanford University.
Devjanin, E., A. Lensky, V. Samsonov, L. Shtilman, (1973) Elaboration of a model of the walking vehicle and correponding control system, In V IFAC Symposium on Automatic Control in Space, Genua, Italy.
Diederich, B., M. Schumm, H. Cruse, (2002) Stick insects walking along inclined surfaces, Integrative and Comparative Biology, 42(1), 165-173.
Dudek, D. M., R. J. Full, (2006) Passive mechanical properties of legs from running insects, Journal of Experimental Biology, 209, 1502-1515.
Dupont, S., T. Pape, (2007) Fore tarsus attachment device of the male scuttle fly, Aenigmatias lubbockii, Journal of Insect Science, 7(54), 1536-2442.
English, J. D., A. A. Maciejewski, (1998) Fault tolerance for kinematically redundant manipulators: anticipating free-swinging joint failures, IEEE Transactions on Robotics and Automation, 14, 566-575.
English, J. D., A. A. Maciejewski, (2000) Measuring and reducing the euclidean-space effects of robotic joint failures, IEEE Transactions on Robotics and Automation, 16(1), 20-28.
Fujiu, M., Y. Hosoda, H. Maki, (1987) Development of quadruped walking mechanism, 3rd International Conference on Advanced Robotics, 65-76.
Fearing, R.S., K. H. Chiang, M. H. Dickinson, D. L. Pick, M. Sitti, J. Yan, (2000) Wing transmission for a micromechanical flying insect, IEEE Conference on Robotics and Automation, 2, 1509-1516.
Graham, D. (1977) The effect of amputation and leg restraint on the free walking coordination of the stick insect Carausiusmorosus, Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, A 116(1), 91–116.
Griffin, T. M., R. Kram, S. J. Wickler, D. F. Hoyt, (2004) Biomechanical and energetic determinants of the walk-trot transition in horses, Journal of Experimental Biology, 207, 4215-4223.
Hildebrand, M., (1965) Symmetrical gaits of horse, Science, 150, 701-708.
Hodgins, J. (1988) Legged robots on rough terrain: experiments in adjusting step length, IEEE International Conference on Robotics and Automation, 12, 824-826.
Inagaki, K. (1997) Gait study for hexapod walking with disabled leg, International Conference on Intelligent Robots and Systems, 1, 408-413.
Junmin, P. (1994) Measurement and control of attitudes of quadruped robots, IEEE International Conference on Intelligent Robots and Systems, 2, 1332-1337.
Junzhi, Y., W. Long, M. Tan, (2005) A framework for biomimetic robot fish''s design and its realization, American Control Conference, 3, 1593- 1598.
Janrathitikarn, O. (2007) The use of a cognitive architecture to control a six-legged robot, Master Thesis, The Pennsylvania State University.
Kram, R., B. Wong, R. J. Full, (1997) Three dimensional kinematics and limb kinetic energy of running cockroaches, Journal of Experimental Biology, 200, 1919-1929.
Klaassen, B., R. Linnemann, D. Spenneberg, F. Kirchner, (2001) Biomimetic walking robot scorpion: control and modeling, Special Issue of the Robotics and Autonomous Systems journal.
Kesel, A. B., A. Martin, T. Seidl, (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods, Smart Materials & Structures, 13(3), 512-518.
Lewis, M. A., A. H. Fagg, G. Bekey, (1994) Genetic algorithms for gait synthesis in a hexapod robot, Recent Trends in Mobile Robots, 317-331.
Lee, Y. J., S. Hirose, (2000) Three-legged walking for fault tolerant locomotion of a quadruped robot with demining mission, International Conference on Intelligent Robots and Systems, 973-978.
McGhee, R. B., A. A. Frank, (1968) On the stability properties of quadruped creeping gaits, Mathematical Biosciences, 3, 331-351.
McGhee, R. B., G. I. Iswandhi, (1979) Adaptive locomotion of a multi-legged robot over rough terrain, IEEE Transactions on Systems, Man, and Cybernetics, 9(4), 176-182.
Mark, A. L., (1993) Implementation of adaptive behaviors in a simple insect-like robot, Masters Thesis, Carleton University, Ottawa, Canada.
Ozguner, F., S. J. Tsai, R. B. McGhee, (1984) An approach to the use of terrain-preview information in rough terrain locomotion by a hexapod walking machine, International Journal of Robotics Research, 3(2), 134-146.
Oricom Technologies, (2003) Analysis of Multi-Legged Animal, [Online]. Available: http://www.oricomtech.com/projects/leg-time.htm.
Parry, D. A., R. H. Brown, (1959) The jumping mechanism of salticid spiders, Journal of Experimental Biology, 36, 654-664.
Pfeiffer, F., H. J. Weidemann, P. Danowski, (1991) Dynamics of the walking stick insect, IEEE Control Systems Magazine, 9-13.
Pal, P. K., K. Jayarajan, (1991) Generation of free gait - a graph search approach, IEEE Transactions on Robotics and Automation, 7(3), 299-305.
Parker, G. B., (1998) Generating arachnid robot gaits with cyclic genetic algorithms, Third Annual Genetic Programming Conference, 576-583.
Paul, J., W. Gronenberg, (1999) Optimizing force and velocity: mandible muscle fiber attachments in ants, Journal of Experimental Biology, 202, 797-808.
Pal, P. K., D. C. Kar, (2000) Gait optimization through search, The International Journal of Robotics Research, 19(4), 394-408.
Prahacs, C., A. Saunders, M. K. Smith, D. McMordie, M. Buehler, (2005) Towards legged amphibious mobile robotics, Journal Engineering Design and Innovation, 1, part. 01P3. [online]. Available: www.cden.ca/JEDI/index.html.
Russell, M. (1983) Odex 1: the first functionoid, Robotics Age, 5(5), 12-18.
Ritzmann, R. E., R. D. Quinn, M. S. Fischer, (2004) Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots, Arthropod Structure and Development, 33(3), 361-379.
Song, S. M., B. S. Choi, (1989) A study on continuous follow-the-leader (FTL) gaits: an effective walking algorithm over rough terrain, Mathematical Biosciences, l(97), 199-233.
Shih, C. L., C. A. Klein, (1993) An adaptive gait for legged walking machines over rough terrain, IEEE transactions on systems, man, and cybernetics, 23(4), 1150-1155.
Schroer, R. T., M. Boggess, R. J. Bachmann, R. D. Quinn, R. E. Ritzmann, (2004) Comparing cockroach and whegs robot body motions, IEEE Conference on Robotics and Automation, 4, 3288-3293.
Srinivasan, M., A. Ruina, (2006) Computer optimization of a minimal biped model discovers walking and running, Nature, 439, 72-75.
Scarfogliero, U., C. Stefanini, P. Dario, (2007) Design and development of the long-jumping ”Grillo” mini robot, IEEE International Conference on Robotics and Automation, 467-472.
Taylor, C. R. (1978) Why change gaits? recruitment of muscles and muscle fibers as a function of speed and gait, American Zoologist, 18(1), 153-161.
Wilson, D. (1966) Insect walking, Annual Review of Entomology, 11.
Ward, D. V. (1969) Leg extension in limulus, Biological Bulletin, 136(2), 288-300.
Wettergreen, D., H. Pangels, J. Bares, (1995) Behavior-based gait execution for the dante ii walking robot, IEEE International Conference on Intelligent Robots and Systems, 3, 274-279.
Yang, J. M., J. H. Kim, (1998) Fault-tolerant locomotion of the hexapod robot, IEEE transactions on systems, man, and cybernetics, B 28, 109-116.
Yamada, T., K. Tanaka, M. Yamakita, (2003) Winding and task control of snake like robot, SICE Annual Conference in Fukui, 3, 2138-2142.
Yang, J. M. (2005) Tripod gaits for fault tolerance of hexapod walking machines with a locked joint failure, Robotics and Autonomous Systems, 52, 180-189.
朱耀沂,蜘蛛博物學,大樹文化,2003。
林寬禮,王湔木牛流馬之改進設計,國立成功大學機械研究所碩士論文,1995。陳柏宏,四連桿與六連桿型木車馬之機構設計,國立成功大學機械研究所碩士論文,1997。陳學東,多足步行機器人運動規劃與控制,華中科技大學出版社,2006。
黃啟育,模組化4+2足步行機械步態規劃,國立中山大學機械研究所碩士論文,2001。許樹淵,運動生物力學,合記圖書出版社,1997。