|
[1] V.A. Ambarzumyan, ÄUber eine Frage der Eigenwerttheorie, Z. Phys., 53,(1929) 690-695. [2] R. Carlson and V.N. Pivovarchik, Ambarzumian''s theorem for trees, Electronic J. Di®. Eqns., Vol. 2007(2007), no. 142, 1-9. [3] H.H. Chern, C.K. Law, and H.J. Wang, Extension of Ambarzumyan''s theorem to general boundary conditions, J. Math. Anal. Appl., 263, no. 2 (2001) 333-342; Corrigendum, 309, no.2 (2005) 764-768. [4] N. Gerasimenko and B. Pavlov, Scattering problems on non-compact graphs, Theor. Math. Phys., 74, (1988) 230-240. [5] T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79, (1997) 4794-4797. [6] P. Kuchment, Graph models for waves in thin structure, Waves in Random Media, 12, (2002) R1-R24. [7] P. Kuchment, Quantum graphs: I. Some basic structures, Waves in Random media, 14, (2004) S107-S128. [8] P. Kuchment, Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen., 38, (2005) 4887-4900. [9] C.K. Law and C.T. Shieh, Ambarzumyan-type theorems for the Sturm-Liouville operator on star-shaped graphs, preprint(2007). [10] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluvwer Academic Publishers, Dordrecht, 1991. [11] V.N. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32, no.4 (2000) 801-819. [12] V.N. Pivovarchik, Ambarzumian''s theorem for a Sturm-Liouville boundary value problem on a star-shaped graph, Funct. Anal. & Appli., 39, no.2 (2005)148-151. [13] V.N. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a star-shaped graph, Math. Nachrichten, Vol.280 (2007), no.13-14, 1595-1619. [14] Yu.V. Pokornyi and A.V. Borvskikh, De®erential equations on networks (geometric graphs), J. Mathematical Sciences, 119, no.6 (2004) 691-718. [15] Yu.V. Pokornyi and V.L. Pryadiev, The qualitative Sturm-Liouville theory on spatial networks, J. Mathematical Sciences, 119, no.6 (2004) 788-835. [16] M. Solomyak, On the spectrum of the Laplacian on regular metric trees, Waves Random Media, 14, (2004) S143-153. [17] M.L. Wu, Ambarzumyan Theorem for the Sturm-Liouville Operator De‾ned on Graphs, Unpublished master Thesis, National Sun Yat-sen University, Kaohsiung, (2007).
|