跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 05:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪屹傑
研究生(外文):Yi-Chieh Hung
論文名稱:圖上Sturm-Liouville算子的模型及其相關之Ambarzumyan問題
論文名稱(外文):A model of Sturm-Liouville operators defined on graphs and the associated Ambarzumyan problem
指導教授:羅春光羅春光引用關係
指導教授(外文):Chun-Kong Law
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:38
中文關鍵詞:Sturm-Liouville 算子Ambarzumyan 問題Pokornyi 模型
外文關鍵詞:Pokornyi''''s modelgraphsAmbarzumyan problemsSturm-Liouville operator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將研究圖上~Sturm-Liouville 算子的~Pokornyi
模型,這個模型由~Pokornyi 和~Pryadiev 在~2004~年提出 ,藉由考慮在某一介質內,彈簧連結系統受振盪時抵抗的最小勢能得到。 此彈簧系統定義在圖~$Gamma$ 上,包括不含端點的線集合 ~$R(Gamma)={gamma_i:i=1,dots,n}$ 和內部點集合~$J(Gamma)$,令 ~$partialGamma$ 為邊界點集合,對任一 ~${ f v}in J(Gamma)$ 我們令 ~$Gamma({ f v})={gamma_iin R(Gamma):~{ f v}$ 是$gamma_i$ 的一個端點 $}$。有關特徵值問題的模型如下
egin{eqnarray*} -(p_iy_i'')''+q_iy_i&=&lambda y_i,~~~~~qquad on~gamma_i上,
y_i({ f v})&=&y_j({ f v}),~~~~~~~~forall { f v}in J(Gamma)~ ~gamma_i,gamma_jin Gamma({ f v}), sum_{gamma_iin Gamma({ f v})}p_i({ f v})frac{dy({ f v})}{dgamma_i}+q({ f v})y({ f v})&=&lambda y({ f v}),qquad ~~forall { f v}in J(Gamma), end{eqnarray*}
配合邊界點上的 ~Neumann 或 ~Dirichlet 邊界條件。這個模型也是~Kuchment 定義在量子圖上的一個特例。
我們將推導出此模型並討論其譜性質,也會依此模型解一些 ~Ambarzumyan 問題。特別地,我們將證明在 ~$n$ 條長度為 ~$a$ 的星狀圖上,若有 ~$p_iequiv1$, ${frac{(m+frac{1}{2})^2)pi^2}{a^2}:min Ncup{0}}$
為其 ~Neumann 特徵值且 ~$0$ 為最小之特徵值,又在內點 ~${ f v}$~處 ~$q_i({ f v})=0$,則在圖$Gamma$~上 ~$q=0$ 。
In this thesis, we study the Pokornyi''s model of a
Sturm-Liouville operator defined on graphs. The model, proposed by Pokornyi and Pryadiev in 2004, is derived from the consideration of minimal energy of a system of interlocking springs oscillating in a medium with resistance. Here the system of springs is defined as a graph $Gamma$ with edges $R(Gamma)={gamma_i:i=1,dots,n}$ and set of internal vertices $J(Gamma)$. Let $partialGamma$ denote the set of boundary vertices of $Gamma$. For each vertex ${ f v}in J(Gamma)$, we let $Gamma({ f v})={gamma_iin R(Gamma):~{ f v}$ is an endpoint of $ gamma_i}$. The related eigenvalue problem of the model is as follows: egin{eqnarray*}
-(p_iy_i'')''+q_iy_i&=&lambda y_i,~~~~~qquad mbox{on}~gamma_i, y_i({ f v})&=&y_j({ f v}),~~~~~~~~forall { f v}in J(Gamma)~
mbox{and}~gamma_i,gamma_jin Gamma({ f v}),
sum_{gamma_iin Gamma({ f v})}p_i({ f v})frac{dy({ f v})}{dgamma_i}+q({ f v})y({ f v})&=&lambda y({ f v}),qquad ~~forall { f v}in J(Gamma), end{eqnarray*} equipped with Neumann or Dirichlet boundary conditions. This model is also a special case of some quantum graphs defined by Kuchment . par We shall derive the model and discuss the spectral properties. We shall also solve several Ambarzumyan problems on the model. In particular, we show that for a $n$-star shaped graph of uniform length $a$ with $p_iequiv1$, if ${frac{(m+frac{1}{2})^2)pi^2}{a^2}:min Ncup{0}}$ are Neumann eigenvalues, $0$ is the least Neumann eigenvalue, and $q_i({ f v})=0$ for ${ f v}in J(Gamma)$, then $q=0$ on $Gamma$.
1 Introduction 5
2 Pokornyi''s model 12
3 Direct Problem for the Ambarzumyan theorems 18
4 Inverse Problem for the Ambarzumyan theorems 22
5 Further Discussion 27
[1] V.A. Ambarzumyan, ÄUber eine Frage der Eigenwerttheorie, Z. Phys., 53,(1929) 690-695.
[2] R. Carlson and V.N. Pivovarchik, Ambarzumian''s theorem for trees, Electronic J. Di®. Eqns., Vol. 2007(2007), no. 142, 1-9.
[3] H.H. Chern, C.K. Law, and H.J. Wang, Extension of Ambarzumyan''s theorem to general boundary conditions, J. Math. Anal. Appl., 263, no. 2 (2001) 333-342; Corrigendum, 309, no.2 (2005) 764-768.
[4] N. Gerasimenko and B. Pavlov, Scattering problems on non-compact graphs,
Theor. Math. Phys., 74, (1988) 230-240.
[5] T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79, (1997) 4794-4797.
[6] P. Kuchment, Graph models for waves in thin structure, Waves in Random Media, 12, (2002) R1-R24.
[7] P. Kuchment, Quantum graphs: I. Some basic structures, Waves in Random media, 14, (2004) S107-S128.
[8] P. Kuchment, Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs, J. Phys. A: Math. Gen., 38, (2005) 4887-4900.
[9] C.K. Law and C.T. Shieh, Ambarzumyan-type theorems for the Sturm-Liouville operator on star-shaped graphs, preprint(2007).
[10] B.M. Levitan and I.S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluvwer Academic Publishers, Dordrecht, 1991.
[11] V.N. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32, no.4 (2000) 801-819.
[12] V.N. Pivovarchik, Ambarzumian''s theorem for a Sturm-Liouville boundary value problem on a star-shaped graph, Funct. Anal. & Appli., 39, no.2 (2005)148-151.
[13] V.N. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a star-shaped graph, Math. Nachrichten, Vol.280 (2007), no.13-14, 1595-1619.
[14] Yu.V. Pokornyi and A.V. Borvskikh, De®erential equations on networks (geometric graphs), J. Mathematical Sciences, 119, no.6 (2004) 691-718.
[15] Yu.V. Pokornyi and V.L. Pryadiev, The qualitative Sturm-Liouville theory on spatial networks, J. Mathematical Sciences, 119, no.6 (2004) 788-835.
[16] M. Solomyak, On the spectrum of the Laplacian on regular metric trees, Waves Random Media, 14, (2004) S143-153.
[17] M.L. Wu, Ambarzumyan Theorem for the Sturm-Liouville Operator De‾ned on Graphs, Unpublished master Thesis, National Sun Yat-sen University, Kaohsiung, (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top