跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳朝忠
研究生(外文):Chao-Zhong Chen
論文名稱:P拉普拉斯算子特徵值比率的最佳上界
論文名稱(外文):Optimal upper bounds of eigenvalue ratios for the p-Laplacian
指導教授:羅春光羅春光引用關係
指導教授(外文):Chun-Kong Law
學位類別:碩士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:36
外文關鍵詞:Eigenvalue ratioSturm-Liouville equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文,我研究在(0,π)上定義的Sturm-Liouville方程式的Dirichlet邊界特徵值比率λ_n/λ_m之最佳化估計。在2005年,Horvath和Kiss[10]證明了當勢函數q≥0而且是一個single-well函數時,即有λ_n/λ_m≤(n/m)^2。並且這是一個最佳化上界估計,等號成立的充分必要條件是q=0。之前,Ashbaugh和Benguria[2]已證明過若q≥0,則λ_n/λ_1≤n^2,並提出有關λ_n/λ_m上界的猜想。以上結果證實了這個猜想。這裡我首先簡化證明Horvath和Kiss[10]的結果。我使用一種修飾過的Prufer代換y(x)=r(x)sin(ωθ(x)),y''(x)=r(x)ωcos(ωθ(x)),這裡的ω=√λ。這個修飾Prufer代換似乎比Horvath和Kiss[10]提出的代換更有效,因為它能簡化證明。此外我的方法可能被推廣至一維p-Laplacian特徵值問題。我研究方程式 -[(y'')^(p-1)]''=(p-1)(λ-q)y^(p-1) 當p>1的Dirichlet問題,此中f^(p-1)=|f|^(p-1)sgn f =|f|^(p-2)f。此論文的主定理是:假設q(x)≥0且q是一個在定義域(0,π_p)上的single-well函數,則特徵值比率滿足λ_n/λ_m≤(n/m)^p,而且這也是一個最佳化上界估計。
In this thesis, we study the optimal estimate of eigenvalue ratios λ_n/λ_m of the
Sturm-Liouville equation with Dirichlet boundary conditions on (0, π). In 2005, Horvath and Kiss [10] showed that λ_n/λ_m≤(n/m)^2 when the potential function q ≥ 0 and is a single-well function. Also this is an optimal upper estimate, for equality holds if and only if q = 0. Their result gives a positive answer to a problem posed by Ashbaugh and Benguria [2], who earlier showed that λ_n/λ_1≤n^2 when q ≥ 0.
Here we first simplify the proof of Horvath and Kiss [10]. We use a modified Prufer substitutiony(x)=r(x)sin(ωθ(x)), y''(x)=r(x)ωcos(ωθ(x)), where ω =
√λ. This modified phase seems to be more effective than the phases φ and ψ that
Horvath and Kiss [10] used. Furthermore our approach can be generalized to study
the one-dimensional p-Laplacian eigenvalue problem. We show that for the Dirichlet
problem of the equation -[(y'')^(p-1)]''=(p-1)(λ-q)y^(p-1), where p > 1 and f^(p-1)=|f|^(p-1)sgn f =|f|^(p-2)f. The eigenvalue ratios satisfies λ_n/λ_m≤(n/m)^p, assuming that q(x) ≥ 0 and q is a single-well function on the domain (0, π_p). Again this is an optimal upper estimate.
1 Introduction 4
2 Eigenvalue ratios for the Sturm-Liouville operator 11
3 Eigenvalue ratios for the p-Laplacian 20
Bibliography 31
[1] M.S. Ashbaugh and R.D. Benguria, Best constant for the ratios of the first two eigenvalues of one-dimensional Schr‥odinger operator with positive potentials, Proc. Amer. Math. Soc. 99 (1987), 598-599.
[2] M.S. Ashbaugh and R.D. Benguria, Optimal bounds for ratios of eigenvalues of one-dimensional Schr‥odinger operators with Dirichlet boundary conditions and positive potentials, Comm. Math. Phys. 124 (1989), 403-415.
[3] M.S. Ashbaugh and R.D. Benguria, Eigenvalue ratios for Sturm-Liouville operators, J. Diff. Eqns. 103 (1993), 205-219.
[4] P. Binding and P. Drabek, Sturm–Liouville theory for the p-Laplacian, Studia Scientiarum Mathematicarum Hungarica 40 (2003), 373-396.
[5] G. Birkhoff and G.C. Rota, Ordinary Differential Equations, 4th ed (1989), Wiley, New York.
[6] C.C. Chen, C.K. Law and F.Y. Sing, Optimal lower estimates for eigenvalue ratios of Schr‥odinger operators and vibrating strings, Taiwanese J. Math. 9
(2005), 175-185.
[7] A. Elbert, A half-linear second order differential equation, Colloqia mathematica Societatis J′onos Bolyai, 30. Qualitiative Theory of Differential Equations,
Szeged(Hungary) (1979), 153-180.
[8] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, (2006), Birkh‥auser Verlag, Basel.
[9] M. Horvath, On the first two eigenvalues of Sturm-Liouville operators, Proc. Amer. Math. Soc. 131 (2002), 1215-1224.
[10] M. Horvath and M. Kiss, A bound for ratios of eigenvalues of Schr‥odinger operators with single-well potentials, Proc. Amer. Math. Soc. 134 (2005), 1425-1434.
[11] M.J. Huang, On the eigenvalue ratios for vibrating strings, Proc. Amer. Math. Soc. 127 (1999), 1805-1813.
[12] Y.L. Huang and C.K. Law, Eigenvalue ratios for the regular Sturm-Liouville system, Proc. Amer. Math. Soc. 124 (1996), 1427-1436.
[13] C.K. Law and C.F. Yang, Reconstructing the potential function and its derivatives using nodal data, Inverse Problems, 14 (1998), 299-312; Addendum, 14
(1998), 779-780.
[14] C.K. Law, W.C. Lian and W.C. Wang, Inverse nodal problem and Ambarzumyan problem for the p-Laplacian, (2008), preprint.
[15] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche di Matematica, 44 (1995), 269-290.
[16] W. Walter, Sturm-Liouville theory for the radial Δp-operator, Math. Z. 227 (1998), 175-185.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top