|
[1] M.S. Ashbaugh and R.D. Benguria, Best constant for the ratios of the first two eigenvalues of one-dimensional Schr‥odinger operator with positive potentials, Proc. Amer. Math. Soc. 99 (1987), 598-599. [2] M.S. Ashbaugh and R.D. Benguria, Optimal bounds for ratios of eigenvalues of one-dimensional Schr‥odinger operators with Dirichlet boundary conditions and positive potentials, Comm. Math. Phys. 124 (1989), 403-415. [3] M.S. Ashbaugh and R.D. Benguria, Eigenvalue ratios for Sturm-Liouville operators, J. Diff. Eqns. 103 (1993), 205-219. [4] P. Binding and P. Drabek, Sturm–Liouville theory for the p-Laplacian, Studia Scientiarum Mathematicarum Hungarica 40 (2003), 373-396. [5] G. Birkhoff and G.C. Rota, Ordinary Differential Equations, 4th ed (1989), Wiley, New York. [6] C.C. Chen, C.K. Law and F.Y. Sing, Optimal lower estimates for eigenvalue ratios of Schr‥odinger operators and vibrating strings, Taiwanese J. Math. 9 (2005), 175-185. [7] A. Elbert, A half-linear second order differential equation, Colloqia mathematica Societatis J′onos Bolyai, 30. Qualitiative Theory of Differential Equations, Szeged(Hungary) (1979), 153-180. [8] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, (2006), Birkh‥auser Verlag, Basel. [9] M. Horvath, On the first two eigenvalues of Sturm-Liouville operators, Proc. Amer. Math. Soc. 131 (2002), 1215-1224. [10] M. Horvath and M. Kiss, A bound for ratios of eigenvalues of Schr‥odinger operators with single-well potentials, Proc. Amer. Math. Soc. 134 (2005), 1425-1434. [11] M.J. Huang, On the eigenvalue ratios for vibrating strings, Proc. Amer. Math. Soc. 127 (1999), 1805-1813. [12] Y.L. Huang and C.K. Law, Eigenvalue ratios for the regular Sturm-Liouville system, Proc. Amer. Math. Soc. 124 (1996), 1427-1436. [13] C.K. Law and C.F. Yang, Reconstructing the potential function and its derivatives using nodal data, Inverse Problems, 14 (1998), 299-312; Addendum, 14 (1998), 779-780. [14] C.K. Law, W.C. Lian and W.C. Wang, Inverse nodal problem and Ambarzumyan problem for the p-Laplacian, (2008), preprint. [15] P. Lindqvist, Some remarkable sine and cosine functions, Ricerche di Matematica, 44 (1995), 269-290. [16] W. Walter, Sturm-Liouville theory for the radial Δp-operator, Math. Z. 227 (1998), 175-185.
|