(3.215.183.251) 您好!臺灣時間:2021/04/23 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭伊利
研究生(外文):Li-Yi Cheng
論文名稱:以臭氧及紫外光程序去除氣體中橡膠臭味之研究
論文名稱(外文):Ozone deodoration of wasted gases from rubber processing
指導教授:周明顯周明顯引用關係
指導教授(外文):Ming-Shean Chou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:橡膠製程臭味臭氧除臭技術臭氧洗滌
外文關鍵詞:odor removal by the ozone oxidation techniquesodor emission from rubber processingozone scrubbing techniques
相關次數:
  • 被引用被引用:6
  • 點閱點閱:502
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的為研發有效控制輪胎等橡膠製程臭排氣技術,以推廣至業界使用。
研究為將橡膠粉末分別加熱至160℃及200℃產生預定強度之模擬臭氣,分別通入兩種反應器,分別進行利用O3與UV/O3氧化去除排氣中揮發性有機物及臭味試驗。
反應器之ㄧ為雙塔式板層塔,每塔由4個串連之反應單元組成,每一單元有效容積為1.0 L,兩塔再串連,總有效容積為8.0 L。視有無通入循環水,可分別進行乾式O3氧化與濕式O3氧化洗滌試驗。另一反應器主要將臭氧及臭氣曝入照射UV之水中,曝氣水之總體積為3.63 L。探討項目為O3劑量、反應時間等參數對臭味去除率之影響,以求出適當反應條件並評估其經濟性。
以乾式雙塔式板層塔處理橡膠臭氣試驗結果顯示,在進氣臭氧濃度4.0 ppm、臭氣中VOC濃度6.5-9.0 ppm (as methane)、溫度38.5℃、氣體空塔停留時間(EBRT) 1.4-11.4秒之操作條件下,臭味強度去除率與EBRT略成正比。EBRT為8.6秒時,VOC及臭味去除率分別為82及70%。濕式試驗結果顯示,在進氣臭氧濃度4.0 ppm、VOC濃度6.6-10.3 ppm (as methane)、溫度37.3℃、EBRT 1.7-13.7秒及液氣流量比(L/G)為0.01 m3/m3之操作條件下,VOC與臭味去除率與EBRT略成正比;在EBRT約為12.0秒時,VOC及臭味去除率分別達97及>90%;在VOC濃度6.5 ppm (as methane)、EBRT 14.5秒及其他相同試驗條件下,VOC去除達100%,三點比較式臭氣濃度由3090去除至130,去除率為96%。
以UV/O3曝氣氧化處理橡膠臭氣結果發現,在進氣臭氧濃度4.0 ppm、VOC濃度12.2-15.0 ppm (as methane)、溫度31.5 ℃、EBRT 18.2秒之操作條件,分別使用不同波長及瓦數的UV燈管進行測試,其中以185 nm/5W之UV燈管的VOC與臭味去除率為最佳,VOC及臭味去除率分別達100 %及70%,剩餘臭氧濃為0.6 ppm;當進氣臭氧濃度4.0 ppm、VOC濃度6.25-11.9 ppm(as methane)、溫度31.5℃、EBRT14.5秒、pH為6.2-6.7之操作條件下,分別使用不同波長及瓦數的UV燈管進行測試,VOC與臭味去除率皆比未加酸的情況佳,VOC及臭味去除率分別達100 %及80%,剩餘臭氧濃為0 ppm。
利用雙塔式板層塔搭配活性碳吸附管進行長時間的處理,濕式試驗結果發現在連續操作210及455分鐘後,在活性碳吸附床的出口處可分別聞到些微的焦臭味及臭氧。乾式試驗結果發現210分鐘後,在佸性碳吸附床的出口處可聞到橡膠,持續實驗至1,410分鐘後,則可同時聞到臭氧味及橡膠味。在實驗持續至540分鐘後,以三點比較式嗅袋法進行測試,橡膠臭味經反應器及活性碳吸附床處理後,臭味強度從4121降至73,整體去除率達98.2%,其中活性碳吸附床的進出口臭味強度從98降至73,去除率為24.9%。經過成本估算結果為5.4元/1000m3,因此在節約成本與能源的考量下,處理橡膠業之製程臭氣,以臭氧洗滌即可。
This study was aimed at the removal of odorous compounds in gases emitted from rubber processing industries. Odorous gas for test was prepared by mixing fresh air and an odorous gas drawn from an oven in which a sample of rubber powder was kept at 160 and 200 oC, respectively. For ozonation tests, the prepared odorous gas was then premixed with a definite amount of ozone-enriched air before entering into a contact system. The contact system consists of two sieve-plate columns connected in series and each column has four 1-L chambers. Depending on with or without introducing a circulating scrubbing water into the columns, the oxidation reaction could be either wet or dry one. For UV/ozonation (UV/O3) tests, batch reactions were performed in a 3.63-L chamber fitted with an UV lamp inserted in a quartz column. A definite volume of the odorous gas generated from the oven was injected into the chamber containing a definite concentration of ozone.
Results from the dry-ozonation tests indicate that that 82 and 70% of VOCs and odorous intensity in the influent gas could be removed, respectively, with the operation conditions of an initial ozone concentration of 4.0 ppm, VOC (methane equivalent) concentrations of 6.5-9.0 ppm, an oxidation temperature of 38.5 oC, and a gas empty-bed-retention time (EBRT) of 8.6 s. Both the VOC and odorous intensity removal efficiencies were roughly proportional to the EBRT in the range of 1.4-11.4 s. Wet-ozonation got 97 and over 90% of VOC and odorous intensity removal, respectively, with the operation conditions of initial ozone concentration 4.0 ppm, VOC (methane equivalent) concentrations 6.5-10.3 ppm, oxidation temperature 37.3 oC, gas EBRT 12 s, and liquid/gas rate ratio 0.01 m3/m3. With conditions similar to those cited above, odor concentration (dilutions to the threshold) in the test gas could be removed from 3,090 to 130 with an EBRT of 14.5 s. Tests also indicate that activated carbon is effective for both physical and chemical removals of the residual VOCs, odorous compounds, and ozone in the effluent gas from the ozonation system. Economical analysis indicates that around NT$ 5.4 is required for treating 1,000 m3 of the tested foul gas by the proposed wet-ozonation and activated carbon adsorption process. Odor concentration (dilutions to the threshold) in a test could be reduced from around 4,000 to 70.
Results of UV/O3 tests indicate that the introduction of the 185 nm UV irradiation at the intensity of 5W/3.63L did not help in the additional VOC and odor removals with an initial ozone concentration 4.0 ppm, VOC (methane equivalent) concentrations of 12.2-15.0 ppm, oxidation temperature of 31.5 oC, and reaction time 18.2 s. UV irradiation is not necessary for the ozonation odor removal of the test gas samples.
謝誌 Ι
中文摘要 Ⅱ
英文摘要 Ⅳ
目錄 Ⅵ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章、前言…………………………………………………………. 1-1
1.1臭味的來源…………………………………………………. 1-1
1.2研究目的與內容………………………………………………… 1-2
第二章、文獻回顧…………………………………………………… 2-1
2.1VOC及異味相關法規……………………………………... 2-1
2.2臭味……………………………………………………………….. 2-3
2.2.1臭味物質的來源……………………………................................. 2-3
2.2.2異味的量測……………………………………………………... 2-5
2.2.3常見的臭味處理技術…………………………………………….. 2-6
2.3橡膠臭味與VOCs……………………………………………….. 2-11
2.3.1煉膠及加硫臭味…………………………………………………. 2-11
2.3.2溶劑使用及再生橡膠臭味………………………………………... 2-12
2.4臭氧……………………………………………………………….. 2-13
2.4.1臭氧與紫外光的特性…………………………………………….. 2-13
2.4.2臭氧的產生與分析……………………………………………….. 2-17
2.4.3臭氧及UV/O3反應……………………………………………….. 2-20
第三章、實驗設備、材料與方法…………………………………. 3-1
3.1 實驗設備………………………………………………………… 3-1
3.1.1雙塔式板層塔反應器…………………………………………. 3-1
3.1.2UV/O3反應器…………………………………………………. 3-2
3.1.3活性碳吸附床的測試……………………..................................... 3-3
3.2實驗材料………………………………………………………… 3-4
3.2.1市售橡膠……………………………………………………… 3-4
3.2.2襯墊橡膠………………………………………………………… 3-4
3.3實驗方法…………………………………………….…………... 3-4
3.3.1乾式臭氧氧化…………………………………………………. 3-5
3.3.2濕式臭氧氧化洗滌……………………………………………. 3-5
3.3.3濕式UV/O3氧化洗滌……………............................................. 3-5
3.3.4濕式活性碳吸附床………......................................................... 3-6
3.3.5乾式活性碳吸附床..................................................................... 3-6
3.4分析方法……………………………………………………….. 3-6
第四章、結果與討論…….……………………………….……….. 4-1
4.1市售橡膠及某工廠橡膠臭味成分分析……….….…………….. 4-1
4.2一般市售橡膠臭味以乾式O3氧化方式處理…………… 4-3
4.3濕式O3氧化洗滌……………………………………………. 4-4
4.3.1一般市售橡膠臭味處理…………………………………….. 4-4
4.3.2某橡膠公司橡膠料臭味處理………………………………... 4-6
4.4濕式UV/O3氧化洗滌.….…………………………………….. 4-7
4.4.1一般市售橡膠臭味處理.…………………………………………. 4-7
4.4.2某橡膠公司橡膠料臭味處理………………………………….. 4-9
4.5活性碳吸附管試驗…………………………………………….. 4-9
4.5.1濕式活性碳吸附管試驗……………………………………….. 4-9
4.5.2乾式活性碳吸附管試驗……………………………………….. 4-10
4.6 VOC削減量與處理成本估算.……………………………….. 4-12
第五章、結論與建議.………………………………………………. 5-1
5.1濕式臭氧與VOC反應機制………………………....…………... 5-1
5.2雙塔式板層塔反應器……………………………………………. 5-1
5.3 UV/O3反應器……………………………………………………. 5-1
5.4活性碳吸附管………………………………………………… 5-2
5.5整體評估………………………………………………………… 5-2
參考文獻…………………..………………………………………….. 6-1
1.行政院環保署網站,環保署統計月報,行政院環保署,2007年。
2.行政院環保署,惡臭防制技術參考手冊,行政院環保署譯,I-IV冊,1988年。
3.Ke Li, Shunzhang Yu, “Economic Status, Smoking, Occupational Exposure to Rubber, and Lung Cancer: A Case-cohort Study,” Environ. Carcino. & Ecotox. Revs., Part C, 20, 1, 2002, p. 21-28.
4.Blanca Laffon, Joao Paulo Teixeira, Susana Silva, Joana Roma-Torres, Beatriz Pérez-Cadahía, Josefina Méndez, Eduardo Pásaro, Olga Mayan, “Assessment of Occupational Genotoxic Risk in the Production of Rubber Tyres,” Ann. Occup. Hyg., 50, 6, 2006, p. 583-592.
5.行政院環境保護署網站,空氣污染防制法,2008年。
6.臭味及有害空氣汙染物控制,甲級空氣污染防治專責人員訓練教材,2007年。
7.沈克鵬,「國內外VOCs處理技術發展趨勢及BACT探討」,揮發性廢氣處理技術講習會,2003年。
8.黃麗敏,「玉米胚芽油壓榨機排煙之化學洗滌除臭研究」,國立中山大學碩士論文,2001年。
9.廖明隆,「合成橡膠」,國立台灣大學化工系,2000年。
10.邱浚佑、呂昕如,「氣泡塔及攪拌槽中臭氧化處理程序之研究」,國立台灣大學「台大工程」學刊,第82期,2001年,第77-91頁。
11.行政院勞工委員會網站,勞工作業環境空氣中有害物容許濃度標準,2008年。
12.Nicole Britigan, Ahmad Alshawa, Sergey A. Nizkorodov, “Quantification of Ozone Levels in Indoor Environments Generated by Ionization and Ozonolysis Air Purifiers,” J. Air & Waste Manage. Assoc., 56, 2006, p. 601-610.
13.魏佳玲,「環保之佼佼者-臭氧(O3)」,化工技術,第一卷第6期,1993年。
14.張鳴助,「臭氧產生器」,工業材料,第119期,1996年。
15.吳仁彰、林義芳,「臭氧之應用與濃度量測」,量測資訊,第62期,1998年。
16.M. J. O’Neil, A. Smith, P. E. Heckelman, J. R. Obenchain Jr., Jo Ann R. Gallipeau, May Ann D’ Arecca, “The Merck Index”, Merck & CO., INC., 13th. , 2001
17.顧洋,「紫外線/臭氧氧化程序在廢水處理上之應用」,工業污染防治,第56期,1995年。
18.吳仁彰,「臭氧濃度量測」,量測資訊,第78期,2001年。
19.Rip G. Rice, L. Joseph Bollyky, William J. Lacy, “Analytical Aspects of Ozone Treatment of Water and Wastewater”, 1986.
20.Mohammad A.T. Alsheyab, Aurelio H. Muñoz, “Optimisation of Ozone Production for Water and Wastewater Treatment,” Desalination, 217, 2007, p. 1-7.
21.Shilpi Singh, Maohong Fan, Robert C. Brown, “Ozone Treatment of Process Water from A Dry-mill Ethanol Plant,” Bioresource Technology, 99, 2008, p. 1801-1805.
22.J. Staehelin, R. E. Bühler, J. Hoigné, “Ozone Decomposition in Water Studied by Pulse Radiolysis. 2. OH and HO4 as Chain Intermediates,” J. Phys. Chem., 88, 1984, p. 5999-6004.
23.Amir Salama P. Eng, M. Sc., “Ozone Oxidation Capabilities,” Ozomax Ltd., 2000.
24.H. D. Gesser, G. Zhu, N. R. Hunter, “Conversion of Ethane to Methanol and Ethanol by Ozone-Sensitized Partial Oxidation at Near Atmospheric Pressure,” Catalysis Today, 24, 1995, p. 321-325.
25.María D. Romero-Sánchez, M. Mercedes Pastor-Blas, José Miguel Martín-Martínez, M. J. Walzak, “Addition of Ozone in the UV Radiation Treatment of A Synthetic Styrene-Butadiene-Styrene (SBS) Rubber,” International Journal of Adhesion & Adhesives, 25, 2005, p. 358-370.
26.A. Gervasini, G. C. Vezzoli, V. Ragaini, “VOC Removal by Synergic Effect of Combustion Catalyst and Ozone,” Catalysis Today, 29, 1996, p. 449-455.
27.周日新、簡志賢、李昔聰、黃曉鈴、楊哲棋、吳進生、莊文榮、辜德旺,「探討最佳可行性控制技術-以水產飼料排氣為案例」,產業環保工程實務研討會,2006年。
28.Jianjun Lin, Akimasa Kawai, Tsuyoshi Nakajima, “Effective Catalysts for Decomposition of Aqueous Ozone,” Applied Catalysis B:Environmental, 39, 2002, p. 157-165.
29.Grazyna E. Orzechowska, Suzanne E. Paulson, “Production of OH Radicals from the Reactions of C4-C6 Internal Alkenes and Styrene with Ozone in the Gas Phase,” Atmospheric Environment, 36, 2002, p. 571-581.
30.Norman S. Allen, Michele Edge, Despina Mourelatou, Arthur Wilkinson, Christopher M. Liauw, M. Dolores Parellada, Juan A. Barrio, V. Ruiz Santa Quiteria, “Influence of Ozone on Styrene-Ethylene-Butylenes-Styrene (SEBS) Copolymer,” Polymer Degradation and Stability, 79, 2003, p. 297-307.
31.Hung-Lung Chiang, P.C. Chiang ,C. P. Huang, “Ozonation of Activated Carbon and Its Effects on the Adsorption of VOCs Exemplified by Methylethylketone and Benzene,” Chemosphere, 47, 2002, p. 267-275.
32.T.A. Metts, S.A. Batterman, “Effect of VOC Loading on the Ozone Removal Efficiency of Activated Carbon Filters,” Chemosphere, 62, 2006, p. 34-44.
33.V. Farines, S. Baig, J. Albet., J. Molinier , C. Legay, “Ozone Transfer from Gas to Water in A Co-current Upflow Packed Bed Reactor Containing Silica Gel,” Chemical Engineering Journal, 91, 2003, p. 67-73.
34.賴慶智、林樹崧、吳信賢,「以臭氧處理VOC之技術發展現況」,高雄市VOCs排放特性與控制技術研討會,2000年。
35.吳信賢、林樹崧、賴慶智,「應用於半導體業有機廢氣處理的氧化洗滌技術」,產業環保工程實務技術研討會,2001年。
36.Roger Atklnson, Sara M. Aschmann, “OH Radical Production from the Gas-Phase Reaction of O3 with A Series of Alkenes under Atmospheric Conditions,” Environ. Sci. Technol., 27, 1993, p. 1357-1363.
37.Andrew R. Rickard, David Johnson, Charlotte D. McGill, George Marston, “OH Yields in the Gas-Phase Reactions of Ozone with Alkenes,” J. Phys. Chem. A, 103, 1999, p. 7656-7664.
38.Hrvoje Kusic, Natalija Koprivanac, Ana Loncaric Bozic, “Minimization of Organic Pollutant Content in Aqueous Solution by Means of AOPs: UV- and Ozone-based Technologies,” Chemical Engineering Journal, 123, 2006, p. 127-137.
39.Hisahiro Einaga, Shigeru Futamura, “Oxidation Behavior of Cyclohexane on Alumina-Supported Manganese Oxides with Ozone”, Applied Catalysis B: Environmental, 60, 2005, p. 49-55.
40.Y. Onari, “The Oxidation Halogenated Ethylenes By Ozone And Applications In Waste Waster Treatment”, Progress in Nuclear Energy, 29, 1995, p. 183-190
41.張耿崚,「紫外光/臭氧處理含氟、氮、硫氧等有機物之氧化特性研究」,中山大學環境工程研究所博士論文,2007年。
42.A.Mokrini, D. Ousse, S. Esplugas, “Oxidation of Aromatic Compounds with UV Radiation/Ozone/Hydrogen Peroxide” Wat. Sci. Tech., 35, 1997, p. 95-102
43.江右君,「活性碳物化特性對揮發性有機物吸附之影響」,台灣大學環境工程學研究所博士論文,1999年。
44.Gholamreza Moussavi, Madjid Mohseni, ”Using UV Pretreatment to Enchance Biofiltration of Aromatic VOCs”, Journal of Hazardous Materials, 144, 2007, p. 59-66
45.王偉信,「以光氧化技術處理半導體製程有機廢水」,國立清學大學原子科學研究所碩士論文,2000年。
46.Eds. Hunter, P. and Oyama, S. T., “Ozone Properties, Handling, and Production, in Control of Volatile Organic Compound Emissions”, John Wiley & Sons, Inc., 2000.
47.黑正明,「以蓄熱式焚化爐處理含氯揮發性有機物之操作性能研究」,國立中山大學環境工程研究所博士論文,2002年。
48.陳政瑋,「餐廚業排氣之濕式洗滌及活性碳吸附除臭研究」,國立中山大學環境工程研究所博士論文,2006年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔