(3.234.221.67) 您好!臺灣時間:2021/04/11 14:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃錦宏
研究生(外文):Chin-hung Huang
論文名稱:高雄地區大氣中醛酮類化合物濃度時空分布調查分析
論文名稱(外文):Temporal and spatial characteristics of atmospheric carbonyl compounds in Kaohsiung Area
指導教授:陳康興陳康興引用關係
指導教授(外文):Kang-Shin Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:214
中文關鍵詞:日變化季節變化醛酮類化合物因子分析
外文關鍵詞:Carbonyl compoundsSeasonal variationDiurnal variationFactor analysis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用LpDNPH−Cartridge及微電腦空氣採樣器分析高雄市 (楠梓站及小港站)與高雄縣(仁武站及林園站)四季大氣中醛酮類化合物(Carbonyls)之濃度特徵,並探討醛酮類化合物濃度四季變化及日變化,最後利用因子分析推估高雄地區境內之可能污染來源。

楠梓站及小港站濃度最高為乙醛,年平均濃度為27.83 μg/m3及28.91 μg/m3,其次為甲醛,年平均濃度為5.03 μg/m3及6.92 μg/m3;仁武站及林園站濃度最高為乙醛,年平均濃度為11.46 μg/m3及10.06 μg/m3,其次為甲醛,年平均濃度為7.88 μg/m3及6.59 μg/m3。

季節性方面,楠梓站與小港站均以夏季(65.42及85.09 μg/m3)最高,冬季(25.06及37.12 μg/m3)最低;仁武站與林園站均以冬季(49.94及55.24 μg/m3)最高,秋季(24.48及11.78 μg/m3)最低,另外此兩地區其他Carbonyls物種分布均不相似,可知在都市及鄉村Carbonyls之來源及分布不同。日變化方面,早上及晚上時段因交通車流量較高,使得Carbonyls濃度較高。

以因子分析法解析Carbonyls濃度,推估出楠梓地區主要污染物來源為移動源(汽車與柴油車)、工業源(金屬、廢棄物處理、造紙)、餐飲源及其他污染源;小港地區污染物貢獻來源為移動源(汽車與柴油車)、工業源(皮革、化學製程)及餐飲源;仁武地區主要污染物為工業源(金屬、化學製程)、移動源(汽車)、餐飲源及其他排放源;林園地區污染物貢獻來源為工業源(金屬、皮革、鋼鐵)、移動源(柴油車)及餐飲源。
The concentrations of atmospheric carbonyls were studied by the LpDNPH-Cartridge and the microcomputer air sampling device at Nan-Chie 、Hsiung-Kong、Ren-Wu and Lin-Yuan sites. Factor analysis was also used to determine the source apportionment in the Kaoshiung area.

The results showed that the highest concentrations of carbonyls was acetaldehyde (27.83, 28.91, 11.46 and 10.06 μg/m3) at four sites, followed by formaldehyde (5.03, 6.92, 7.88 and 6.59 μg/m3), respectively.

The highest concentration of total carbonyls at Nan-Chie and Hsiung-Kong was 65.42 μg/m3 and 85.09 μg/m3 in summer, the lowest concentration was 25.06 μg/m3 and 37.12 μg/m3 in winter, relatively, the highest concentration of total carbonyls at Ren-Wu and Lin-Yuan was 49.94 μg/m3 and 55.24 μg/m3 in winter, the lowest concentration was 24.48 μg/m3 and 11.78 μg/m3 in autumn. Additionally, peak rush hours of the traffics, either in the morning or at night, would result in increased concentration of Carbonyls.

The results of factor analysis showed that the principle sources at Nan-Chie were traffic exhausts (diesel and gasoline vehicle) and stationary sources (metal assembly, waste treatment, pulp and restaurant). The principle sources at Hsiung-Kong were traffic exhausts (diesel, and gasoline vehicle), stationary sources (leather, chemical process and restaurant). The main sources at Ren-Wu were traffic exhausts (gasoline vehicle) and stationary sources (metal assembly, chemical process and restaurant). The main sources at Lin-Yuan were traffic exhausts (diesel vehicle) and stationary sources (metal assembly, leather, steel production and restaurant).
目 錄

謝誌 I
中文摘要 II
英文摘要 III
目錄 IV
表目錄 VI
圖目錄 VIII
附表目錄 IX
附圖目錄 X

第一章 前言 1-1
1.1 研究緣起 1-1
1.2 研究目標 1-1

第二章 相關研究及文獻回顧 2-1
2.1 高雄縣市近年空氣及氣象背景資料概述 2-1
2.1.1 空氣品質PSI變化趨勢 2-1
2.1.2 各空氣污染物濃度變化趨勢 2-5
2.1.3 高雄市空氣污染物排放量概估 2-16
2.1.4高雄市空氣污染物排放量概估 2-17
2.1.5高雄地區氣象概述 2-21
2.2 醛酮類化合物 2-24
2.2.1 醛酮類化合物之特性 2-24
2.2.2 醛酮類化合物之來源及排放特徵 2-26
2.2.3醛酮類化合物在大氣環境中之生成 2-29
2.2.4醛酮類化合物在大氣環境中之轉化 2-32
2.2.5醛酮類化合物及其前驅物致臭氧生成特性 2-34
2.2.6醛酮類化合物之健康危害 2-35
2.2.7醛酮類化合物之濃度分布 2-37
2.3 受體模式 2-38
2.3.1主成分分析/絕對主成分分析 2-38

第三章 研究方法與步驟 3-1
3.1 研究架構與流程 3-1
3.2大氣中醛酮類化合物(Carbonyls)採樣地點及時段規劃 3-2
3.2.1 大氣多環芳香烴化合物採樣規劃 3-2
3.3 採樣方法與設備 3-5
3.3.1空氣採樣器 3-5
3.3.2吸附管 3-7
3.4採樣程序 3-8
3.5樣品分析 3-8
3.6分析設備及程序 3-8
3.7因子分析與受體模式之理論基礎 3-9
3.7.1因子分析 3-9
3.8 Carbonyls分析之品質保證與品質控制 3-13
3.8.1空白試驗 3-13
3.8.2方法偵測極限 3-13
3.8.3檢量線之配置 3-14
3.8.4準確度 3-14
3.8.5精密度(RSD) 3-15

第四章 結果與討論 4-1
4.1大氣中醛酮類化合物(Carbonyl compounds)濃度 4-1
4.1.1採樣時間之氣象資料 4-1
4.2大氣中醛酮類化合物濃度 4-5
4.2.1大氣中醛酮類化合物之特性 4-5
4.2.2大氣中醛酮類化合物濃度之季節變化分布 4-16
4.2.3大氣中醛酮類化合物濃度之日變化分布 4-27
4.3大氣中醛酮類化合物貢獻來源分析 4-38
4.3.1醛酮類化合物指紋之建立 4-38
4.3.2醛酮類化合物之夏季及冬季貢獻來源分析 4-46
4.3.3醛酮類化合物之貢獻來源分析 4-57

第五章 結論與建議 5-1
5.1 結論 5-1
5.2 建議 5-3

參考文獻 ..參-1
附錄A 空氣中氣態之醛類化合物檢驗方法 附A-1
附錄B 高雄市(楠梓站及小港站)與高雄縣(仁武站及林園站)
四季採樣時程之各時段風花圖 附B-1
附錄C高雄市(楠梓站及小港站)與高雄縣(仁武站及林園
站)carbonyls大氣採樣之各時段濃度表 附C-1
附錄D 個人簡歷 附D-1

表目錄

表2.1-1 民國87-96年高雄市四空品測站臭氧(O3)事件日每年之天數 2-3
表2.1-2 民國87-96年高雄市四空品測站懸浮微粒(PM10)事件日每年之天數 2-3
表2.1-3 民國87-96年高雄縣四空品測站臭氧(O3)事件日每年之天數 2-4
表2.1-4 民國87-96年高雄縣四空品測站懸浮微粒(PM10)事件日每年之天數 2-4
表2.1-5 高雄市污染來源排放總表 2-19
表 2.1-6 高雄縣污染來源排放總表 2-20
表2.1-7 高雄地區近十年各月份平均氣象資料統計表 2-23
表2.2-1 18種Carbonyls之分子量及物理特性 2-25
表2.2-2 各污染源之Carbonyls濃度特徵之比較 2-28
表2.2-3 Carbonyls之健康危害資料 2-36
表3.2-1 本研究分析之18種Carbonyls物種 3-3
表3.2-2 高雄地區空氣品質監測網測站環境資料一覽表 3-4
表3.2-3 高雄地區之採樣日期 3-5
表3.8-1 Carbonyls標準品之成分及濃度(Rescek) 3-16
表3.8-2 標準品檢量線 3-17
表3.8-3 18種Carbonyls之回收率 3-18
表4.1-1 採樣時間氣象資料 4-3
表4.2-1 高雄地區Carbonyls濃度 4-6
表4.2-2 高雄地區(四測站)各Carbonyls濃度之百分比 4-10
表4.2-3 本研究Carbonyls濃度與其他地區之相關文獻比較 4-13
表4.2-4 高雄市(楠梓站及小港站)Carbonyls之四季濃度分布 4-21
表4.2-5 高雄縣(仁武站及林園站)Carbonyls之四季濃度分布 4-23
表4.2-6 高雄市(楠梓站及小港站)Carbonyls各時段濃度 4-32
表4.2-7 高雄縣(仁武站及林園站)Carbonyls各時段濃度 4-34
表4.3-1 移動源排放之Carbonyls百分比 4-43
表4.3-2 工業源排放之Carbonyls濃度百分比 4-44
表4.3-3 各餐飲源排放之Carbonyls百分比 4-45
表4.3-4 其他排放源之Carbonyls濃度百分比 4-46
表4.3-5 楠梓站夏季之Carbonyls平均濃度因子分析結果 4-48
表4.3-6 楠梓站冬季之Carbonyls平均濃度因子分析結果 4-49
表4.3-7 小港站夏季之Carbonyls平均濃度因子分析結果 4-51
表4.3-8 小港站冬季之Carbonyls平均濃度因子分析結果 4-52
表4.3-9 仁武站夏季之Carbonyls平均濃度因子分析結果 4-54
表4.3-10 仁武站冬季之Carbonyls平均濃度因子分析結果 4-55
表4.3-11 林園站夏季之Carbonyls平均濃度因子分析結果 4-57
表4.3-12 林園站冬季之Carbonyls平均濃度因子分析結果 4-58
表4.3-13 楠梓站之Carbonyls平均濃度因子分析結果 4-60
表4.3-14 小港站之Carbonyls平均濃度因子分析結果 4-61
表4.3-15 仁武站之Carbonyls平均濃度因子分析結果 4-63
表4.3-16 林園站之Carbonyls平均濃度因子分析結果 4-64

圖目錄

圖2.1-1 高屏地區空氣品質現況(87-96年) 2-2
圖2.1-2 高雄市各測站SO2逐月濃度變化趨勢(87-96年) 2-6
圖2.1-3 高雄市各測站CO逐月濃度變化趨勢(87-96年) 2-7
圖2.1-4 高雄市各測站O3逐月濃度變化趨勢(87-96年) 2-8
圖2.1-5 高雄市各測站PM10逐月濃度變化趨勢(87-96年) 2-9
圖2.1-6 高雄市各測站NOX逐月濃度變化趨勢(87-96年) 2-10
圖2.1-7 高雄縣各測站SO2逐月濃度變化趨勢(87-96年) 2-11
圖2.1-8 高雄縣各測站CO逐月濃度變化趨勢(87-96年) 2-12
圖2.1-9 高雄縣各測站O3逐月濃度變化趨勢(87-96年) 2-13
圖2.1-10 高雄縣各測站PM10逐月濃度變化趨勢(87-96年) 2-14
圖2.1-11 高雄市各測站NOX逐月濃度變化趨勢(87-96年) 2-15
圖3.1-1 研究架構流程圖 3-1
圖3.2-1 高雄地區Carbonyls採樣點周界環境示意圖 3-3
圖3.3-1 Airchek 2000空氣採樣器 3-6
圖3.3-2 LpDNPH-Cartridge吸附管示意圖 3-7
圖4.2-1 高雄地區(四測站)之總 Carbonyls 年平均濃度 4-8
圖4.2-2 高雄地區四測站各Carbonyls年平均濃度百分比分布 4-11
圖4.2-3 高雄地區四測站採樣時段CO濃度 4-16
圖4.2-4 高雄市(楠梓站及小港站)之總Carbonyls四季濃度分布 4-19
圖4.2-5 高雄縣(仁武站及林園站)之總Carbonyls四季濃度分布 4-19
圖4.2-6 高雄市(a)楠梓站與(b)小港站四季之各Carbonyls濃度 百分比分布 4-26
圖4.2-7 高雄縣(a)仁武站與(b)林園站四季之各Carbonyls濃度百分比分布 4-27
圖4.2-8 高雄市(楠梓站及小港站)四時段之總Carbonyls濃度 4-29
圖4.2-9 高雄縣(仁武站及林園站)四時段之總Carbonyls濃度 4-29
圖4.2-10 高雄市(a)楠梓站與(b)小港站四時段之各Carbonyls濃度百分比分布 4-37
圖4.2-11 高雄縣(a)仁武站與(b)林園站四時段之各Carbonyls濃度百分比分布 4-38



附表目錄

附表C-1 楠梓站春季carbonyls大氣採樣之各時段濃度表 附C-1
附表C-2 楠梓站夏季carbonyls大氣採樣之各時段濃度表 附C-2
附表C-3 楠梓站秋季carbonyls大氣採樣之各時段濃度表 附C-3
附表C-4 楠梓站冬季carbonyls大氣採樣之各時段濃度表 附C-4
附表C-5 小港站春季carbonyls大氣採樣之各時段濃度表 附C-5
附表C-6 小港站夏季carbonyls大氣採樣之各時段濃度表 附C-6
附表C-7 小港站秋季carbonyls大氣採樣之各時段濃度表 附C-7
附表C-8 小港站冬季carbonyls大氣採樣之各時段濃度表 附C-8
附表C-9 仁武站春季carbonyls大氣採樣之各時段濃度表 附C-9
附表C-10 仁武站夏季carbonyls大氣採樣之各時段濃度表 附C-10
附表C-11 仁武站秋季carbonyls大氣採樣之各時段濃度表 附C-11
附表C-12 仁武站冬季carbonyls大氣採樣之各時段濃度表 附C-12
附表C-13 林園站春季carbonyls大氣採樣之各時段濃度表 附C-13
附表C-14 林園站夏季carbonyls大氣採樣之各時段濃度表 附C-14
附表C-15 林園站秋季carbonyls大氣採樣之各時段濃度表 附C-15
附表C-16 林園站冬季carbonyls大氣採樣之各時段濃度表 附C-16

附圖目錄

附圖B-1 楠梓站春季採樣日期 (時段)之風花圖 B-1
附圖B-2 楠梓站夏季採樣日期 (時段)之風花圖 B-3
附圖B-3 楠梓站秋季採樣日期 (時段)之風花圖 B-5
附圖B-4 楠梓站冬季採樣日期 (時段)之風花圖 B-7
附圖B-5 小港站春季採樣日期 (時段)之風花圖 B-9
附圖B-6 小港站夏季採樣日期 (時段)之風花圖 B-11
附圖B-7 小港站秋季採樣日期 (時段)之風花圖 B-13
附圖B-8 小港站冬季採樣日期 (時段)之風花圖 B-15
附圖B-9 仁武站春季採樣日期 (時段)之風花圖 B-17
附圖B-10 仁武站夏季採樣日期 (時段)之風花圖 B-19
附圖B-11 仁武站秋季採樣日期 (時段)之風花圖 B-21
附圖B-12 仁武站冬季採樣日期 (時段)之風花圖 B-23
附圖B-13 林園站春季採樣日期 (時段)之風花圖 B-25
附圖B-14 林園站夏季採樣日期 (時段)之風花圖 B-27
附圖B-15 林園站秋季採樣日期 (時段)之風花圖 B-29
附圖B-16 林園站冬季採樣日期 (時段)之風花圖 B-31
Altshuller, A.P., 1993. Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkanes during the night and early morning hours. Atmospheric Environment 27, 21 − 32.
Anderson, L.G., Lanning, J.A., Barrell, R., Miyagishima, J.M., Jones, R.H., Wolfe, P., 1996. Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver’s ambient concentration data. Atmospheric Environment 30, 2113 − 2123.
Andreini, B.P., Baroni, R., Galimberti, E., Sesana, G., 2000. Aldehydes in the atmospheric environment: evaluation of human exposure in the north-west area of Milan. Microchemical Journal 67, 11 − 19.
Atkinson, R., 1990. Gas-phase trospospheric chemistry of organic chemistry: a review. Atmospheric Environment 24A, 1 − 41.
Atkinson, R., Tuazon, E. C. and Aschmann, S. M., 1995. Products of the Gas-Phase Reactions of a Series of 1-Alkenes and 1-Methylcyclohexene with the OH Radical in the Presence of NO. Environment Science and Technology 29, 1674 − 1680.
Baez, P.A., Belmont, R., Padilla, H., 1995. Measurements of formaldehyde and acetaldehyde in the atmosphere of Mexico City. Environmental Pollution 89, 163 − 167.
Baez, P.A., Padilla, H., Cervantes, J., Pereyra, D., Torres, M.C.,
Garcia, R., Belment, R., 2001. Preliminary study of the determination of ambient carbonyls in Xalapa City, Veracruz, Mexico, Atmospheric Environment 35, 1813 − 1819.
Bailey, R. A., Clark, H. M., Krause, S., Strong, R. L., 1978. Atmospheric Press, New York.
Bakeas, E.B., Argyris, D.I., Siskos, P.A., 2003. Carbonyls compounds in the urban environment of Athens, Greece. Chemosphere 52, 805 − 813.
Baugh, J., Ray, W., Black, F., 1987. Motor vehicle emissions under reduced ambient temperature idle operating conditions. Atmospheric Environment 21, 2077 − 2082.
Borbon, A., Locoge, N., Veillerot, M., Galloo, J. C., Guillermo, R., 2002. Characteristics of NMHCs in a French urban atmosphere: overview of the main sources. The Science of the Total Environment 292, 177 − 191.
Carlier, P., Hannachi, H., Mouvier, G., 1986. The chemistry of carbonyl compounds in the atmosphere- a review. Atmospheric Environment 20, 2079 − 2099.
Carter, W.P.L., 1994. Development of ozone reactivity scales for volatile organic compounds. Journal of the Air & Waste Management Association 44 , 881 − 899.
Carter, W.P.L., Pierce, J.A., Luo, D., and Malkina, I.L., 1995. Environmental Chanmber Study of Maximum Incremental Reactivities of Volatile Organic Compounds. Atmospheric Environment 29, 2499 − 2511.
Ceron, R.M., Ceron, J.G., Muriel, M., 2007. Diurnal and seasonal trends in carbonyl levels in a semi-urban coastal site in the Gulf of Campeche, Mexico. Atmospheric Environment 41, 63 − 71.
Cetin, E. Odabasi, M., Seyfioglu, R., 2003. Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery. The Science of the Total Environment 312, 103 − 112.
Chiang, T.A., Wu, P.F., Wang, L.F., Lee, H., Lee, C.H., and Ko, Y.C., 1997. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heatedcooking oils produced in Taiwan. Mutation Research 381, 157 − 161.
Christensen, C.S., Skov, H., Nielsen, T., Lohse, C., 2000. Temporal Variation of Carbonyl Compound Concentrations at a Semi-Rural Site in Denmark. Atmospheric Environment 34, 287 − 296.
Ciccioil, P., Brancaleoni, E., Frattoni, M., Cecinato, A., Brachetti, A., 1993. Ubiquitous occurrence of semi-volatile carbonyl compounds in tropospheric samples and their possible source. Atmospheric Environment 27A, 1891 − 1901.
DAlessandro, A., Lucarelli, F., Mando, P.A., Marcazzan, G., Nava, S., Prati, P., Valli, G., Vecchi, R., Zucchiatti, A., 2003. Hourly elemental composition and sources identification of fine and coarse PM10 particulate matter in four Italian towns. Journal of Aerosol Science 34, 243 − 259.
Dincer, F., Muezzinoglu, A., 2006. Chemical characterization of odors due to some industrial and urban facilities in Izmir, Turkey. Atmospheric Environment 40, 4210 − 4219.
Fang G.C., Wu, Y.S., Chang, C.N., Ho, T.T., 2006. A study of polycyclic aromatic hydrocarbons concentrations and source identifications by methods of diagnostic ratio and principal component analysis at Taichung chemical Harbor near Taiwan Strait. Chemosphere in press.
Fehsenfeld, F.C., Coauthors, 1992. Emissions of volatile organic compounds form vegetation and implications for atmospheric chemistry. Global Biogeochemical Cycles 6, 389 − 430.
Feng, Y., Wen, S., Chen, Y., Wang, X., Lu, H., Bi, X., Sheng G., Fu, J., 2005. Ambient levels of carbonyl compounds and their sources in Guangzhou, China. Atmospheric Environment 39, 1789 − 1800.
Gaffney, J.S., Marley, N.A., Martin, R.S., Dixon, R.W., Reyes, L.G., Popp, C.J., 1997. Potential air quality effects of using ethanol-gasoline fuel blends: a field study in Albuquerque, New Mexico. Environmental Science and Technology 31, 3053 − 3061.
Godoy, M.L.D.P., Godoy, J.M., Artaxo, P., 2005. Aerosol source apportionment around a large coal fired power plant- Thermoelectric Complex Jorge Lacerda, Santa Catarina, Brazil. Atmospheric Environment 39, 5307 − 5324.
Granby, K., Christensen, C.S., Lohse, C., 1997. Urban and semi-rural observations of carboxylic acids and carbonyls. Atmospheric Environment 31, 1403 − 1415.
Grosjean, D., 1982. Formaldehyde and other carbonyls in Los Angeles ambient air. Environment Science and Technology 16, 254 − 262.
Grosjean, D., William II, E.L., Grosjean, E., 1993a. Atmospheric chemistry of isoprene and of its carbonyl products. Environmental Science and Technology 27, 830 − 840.
Grosjean, D., Williams II, E.L., Grosjean, E., 1993b. Peroxyacyl nitrates at southern California mountain forest locations. Environmental Science and Technology 27, 110 − 121.
Grosjean, D., Grojean, E., Seinfeld, J.H., 1996a. Atmospheric chemistry of 1-octene, 1-decene, and cyclohexene: gas-phase carbonyl and peroxyacyl nitrate products. Environmental Science and Technology 30, 1038 − 1047.
Grosjean, E., Grojean, D., Fraser, M.P., Cass, G.R., 1996b. Air quality model evaluation data for organics. 2. C1 - C14 carbonyls in Los Angeles air. Environmental Science and Technology 30, 2687 – 2703.
Grosjean, D., Grosjean, E., Moreira, L.F.R., 2002. Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environmental Science and Technology 36, 1389 – 1395.
Guo, H., Lee, S.C., Ho, K.F., Wang, X.M., Zou, S.C., 2003. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmospheric Environment 37, 5307 − 5317.
Guo, H., Wang, T., Louie, P.K.K., 2004a. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal compound scores (PCA/APCS) receptor model. Environmental Pollution 129, 489 − 498.
Guo, H., Wang, T., Simpson, I.J., Blake, D.R., Yu, X.M., Kwork, Y.H., Li, Y.S., 2004b. Source contributions to ambient VOCs and CO at a rural site in eastern China. Atmospheric Environment 38, 4551 − 4560.
Guyon, P., Graham, B., Robertsw, G.C., Mayol-Bracero, O.L., Maenhaut, W., Artaxo, P., Andreae, M.O., 2004. Source of optically active aerosol particles over the Amazon forest. Atmospheric Environment 38, 1039 − 1051.
Ho, K.F., Lee, S.C., Chiu, G.M.Y., 2002. Characterization of selected volatile organic compounds, polycyclic aromatic hydrocarbons and carbonyl compounds at a roadside monitoring station. Atmospheric Environment 36, 57 − 65.
Ito, K., Xue, N., Thurston, G., 2004. Spatial variation of PM2.5 chemical species and source-apportioned mass concentrations in New York City. Atmospheric Environment 38, 5269 − 5282.
Possanzini, M., Di Palo, V., Petricca, M., Fratarcangeli, R., Brocco, D., 1996. Measurements of lower carbonyls in Rome ambient air. Atmospheric Environment 30, 3757 − 3764.
Kawamura, K., Steinberg, S., Kaplan, I.R., 2000. Homologous series of C1-C10 monocarboxylic acids and C1-C6 carbonyls in Los Angeles air and motor vehicle exhausts. Atmospheric Environment 34,4175 – 4191.
Kalaitzoglou, M., Terzi, E., Samara, C., 2004. Patterns and sources of particle-phase aliphatic and polycylic aromatic hydrocarbons in urban and rural sites of western Greece. Atmospheric Environment 38, 2545 – 2560.
Kean, A.J., Grosjean, E., Grosjean, D., Harley, R.A., 2001. On-road measurement of carbonyls in California light-duty vehicle emissions. Environment Science and Technology 35, 4198 − 4204.
Kesselmeier, J., Bode, K., Hofmann, U., Muller, H., Schafer, L., Wolf, A., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Ferrari, C., Jacob, V., Fugit, J.L., Dutaur, L., Simon, V., Torres, L., 1997. Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiologica activities, carbon budget and emission algorithms. Atmospheric Environment 31, 119 − 133.
Kim, K.H., Hong, Y.J., Raktim Pal., Jeon E.C., Koo, Y.S., 2008. Investigation of carbonyl compounds in air from various industrial emission sources. Chemosphere 70, 807 − 820.
Lai, C.H., Chen, K.S., Ho, Y.T., Peng, Y.P., Chou, Y.M., 2005. Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan. Atmospheric Environment 39, 4543 − 4559.
Lai, C.H., Chen, K.S., Tsai P.C., 2006. Health Risk Assessment and Emission Source of Hazardous Air Pollutants in Kaohsiung City. Journal of Central Taiwan University of Science and Technology, in press.
Levy, H., 1971. Normal atmosphere: large radical and formaldehyde concentration predicted. Science 173, 141 − 143.
Lightfoot, P.D., Cox, R.A., Crowley, J.N., Destriau, M., Hayman, G.D., Jenkin, M.E., Moortgat, G.K., and Zabel, F., 1992. Organic peroxy radicals: kinetics, spectroscopy and tropospheric chemistry, Atmospheric Environment 26A, 1805 − 1961.
Miller, S.L., Anderson, M.J., Daly, E.P., Milford, J.B., 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment 36, 3629 – 3641.
Montzakz, S.A., Trainer, M., Goldan, P.D., Kuster, W.C., Fehsenfeld, F. C., 1993. Isoprene and its oxidation products, methyl vinyl ketone and methacrolein, in the rural troposphere. Journal of Geophysical Research 98, 1101 − 1111.
Moussa, S.G., El-Fadel, M., Saliba, N.A., 2006. Seasonal, diurnal and nocturnal behaviors fo lower carbonyl compounds in the urban environment of Beirut, Lebanon. Atmospheric Environment 40, 2459 − 2468.
Muller, K., 1997. Determination of aldehydes and ketones in the atmosphere-a comparative long time study at an urban and a rural site in eastern Germany. Chemosphere 35, 2093 − 2106.
Nelson, P.F., Quigley, S.M., 1982. Non-methane hydrocarbons in the atmosphere of Sydney, Australia. Environmental Science and Technology 16, 650 − 655.
Pang, X., Mu, Y., 2006. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air. Atmospheric Environment 40, 6313 − 6320.
Peng, C.Y., Yang, H.H., Lan, C.H., Chien, S.M., 2008. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust. Atmospheric Environment 42, 906 − 915.
Possanzini, M., Palo, V.D., Petricca, M., Fratarcangeli, R., Brocco, D., 1996. Measurements of Lower Carbonyls in Rome Ambient Air. Atmospheric Environment 30, 3757 − 3764.
Raktim, P., Kim, K.H., Hong, Y.J., Jeon, E.C., 2008. The pollution status of atmospheric carbonyls in highly industrialized area. Journal of Hazardous Materials 153(3), 1122 − 1135.
Satsumabayashi, H., Kurita, H., Chang, Y.S., Carmichael, G.R., 1995. Photochemical formations of lower aldehydes and lower fatty acids under long-range transport in central Japan. Atmospheric Environment 29(2), 255 − 266.
Senaratne, I., and Shooter, D., 2004. Elemental composition in source identification of brown haze in Auckland, New Zealand. Atmospheric Environment 38, 3049 − 3059.
Schulte, J.H., 1964. Sealed environment in relation to health and disease. Archives of Environment Health 8, 438 − 452.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 1999a. Measurement of emissions from air pollution sources. 2. C1 though C30 organic compounds from medium duty diesel trucks. Environmental Science and Technology 33, 1578 − 1587.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions from air pollution sources. 3. C1–C29 organic compounds from fireplace combustion of wood. Environmental Science and Technology 35, 1716 − 1728.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2002. Measurement of Emissions from Air Pollution Sources. 4. C1 - C27 Organic Compounds from Cooking with Seed Oils. Environment Science and Technology 36, 567 − 575.
Schneeweiss, H., Mathes, H. 1995. Factor analysis and principal compounds. Journal of Multivariate Analysis 55, 105 − 124.
Senaratne, I., Shooter, D., 2004. Elemental composition in source identification of brown haze in Auckland, New Zealand. Atmospheric Environment 38, 3049 − 3059.
Shepson, P.B., Hastie, D.R., Schiff, H. I., Polizzi, M., Bottenheim, J.W., Anlauf, K., Mackay, G.I., Karecki, D.R., 1991. Atmospheric concentrations and temporal variations of C1 - C3 carbonyl-compounds at 2 rural sites in Central Ontario. Atmospheric Environment Part A-General Topics 25, 2001 − 2015.
Shimoda, M., Nakada, N., Nakashima, M., Osajima, Y., 1997. Quantitative comparison of volatile flavor compounds in deep-roasted sesame seedoil. Journal of Agriculture and Food Chemistry 45, 3193 − 3196.
Siegl, W.O., Hammerle, R.H., Herrmann, H.M., Wenclawiak, B.W., Luers-Jongen, B., 1999. Organic emission profile for a light-duty diesel vehicle. Atmospheric Environment 33, 797 − 805.
Singh, H.B., Ohara, D., Herlth, D., Sachse, W., Blake, D.R., Bradshaw, J.D., Kanakidou, M., Crutzen, P.J., 1994. Acetone in the Atmosphere-Distribution, Sources, and Sinks. Journal of Geophysical research-Atmospheric 99, 1805 − 1819.
Sitting, M., 1974. Aldehydes. Pollution Detection and Monitoring Handbook, Noyes Data Corp., Park Ridge, New Jersey.
Slemr, J., Junkermann, W., 1996. Temporal variations in formaldehyde, acetaldehyde, and acetone and budget of formaldehyde at a rural site in Southern Germany. Atmospheric Environment 21, 3667 − 3676.
Solberg, S., Dye, C., Schidbauer, N., Herzog, A., Genrig, R., 1996. Carbonyls and non-methane hydrocarbons at rural European sites from the Mediterranean to the Arctic. Journal of Atmospheric Chemistry 25, 33 − 66.
Solomon, P.A., 1995. Regional Photochemical Measurement and Modeling Studies: a Summary of the A&WMA International Specialty Conference. Journal of the Air & Waste Management Association 45, 253 − 286.
SPECIATE 3.1. U.S. Environmental Protection Agency, released in October 1999.
(http://www.epa.gov/un/chief/software/speciate/index.html).
Tang, J., 2002. Preliminary study of aldehydes and other volatile organic compounds in the atmospheric environment of Guangzhou. Master’s degree Thesis, 46 − 50
Tanner, R.L., Miguel, A.H., de Andrade, J.B., Gaffney, J.S., Streit, G.E., 1988. Atmospheric chemistry of aldehydes: enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions. Environment Science and Technology 22, 1026 − 1034.
TEDS6.03,2003,Taiwan Emission Data System (TEDS)6.03,中鼎工程公司。
Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., Pekkanen, J., 2003. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment 37, 615 − 623.
Viskari, E.L., Matti Vartiainen and Pertti Pasanen, 2000. Seasonal and diurnal variation in formaldehyde and acetaldehyde concentrations along a highway in eastern finland. Atmospheric Environment 34, 917 − 923.
Wallington, T.J., Dagaut, P. and Kurylo, M.J., 1992. Ultraviolet
absorption cross-sections and reaction kinetics and mechanisms for
peroxy radicals in the gas phase. Chemical reviews 92, 667-710.
Wildt, J., Kobel, K., Schuh, G., Heiden, A.C., 2003. Emissions of oxygenated volatile organic compounds from plants Part II: emissions of saturated aldehydes. Journal of Atmospheric Chemistry 45, 173 − 196.
William, P.L. Carter, 1994. Development of ozone reactivity scales for volatile organic compounds. Journal of Air and Waste Management Association 44, 881–889.
William, P.L. Carter., John, A.P., Dongmin, L., Irina L.M., 1995. Environmental chamber study of maximum incremental reactivities of volatile organic compounds. Atmospheric Environment 29, 2499 – 2511.
Williams, I.D., Revitt, D.M., Hamilton, R.S., 1996. A comparison of carbonyl compound concentrations at urban roadside and indoor sites. The Science of the Total Environment 189/190, 475 − 483.
Zhang, J., He, Q., Lioy, P.J., 1994. Charcteristics of aldehydes: concentrations, source , and exposures for indoor and outdoor residential microenvironments. Environmental Science and Technology 28, 146 − 152.
Zhang, J., Smith, K.R., 1999. Emissions of carbonyl compounds from various cook stoves in China. Environmental Science and Technology 33, 2311 − 2320.
王俊凱,1999,台灣地區大氣氣膠特性之研究-高雄、台北都會區氣膠特性與污染來源推估,碩士論文,國立中央大學/環境工程研究所。
吳易儒,2003,「民俗活動對於空氣品質之影響」,碩士論文,國立成功大學環境工程學系。
林巧云,1998,「醛酮類對血管收縮素功能影響的先驅研究」,碩士論文,國立台灣大學環境衛生研究所。
陳順予,2000,「多變量分析」二版,華泰書局。
劉育穎,2001,「機車排放醛酮類化合物特徵與光化反應性研究」,碩士論文,國立成功大學環境工程學系。
吳俊毅,2007,「高雄市大氣中醛酮類化合物之濃度特徵及時空分布調查分析」,碩士論文,國立中山大學環境工程研究所。
陳千翔,2006,「大氣中多環芳香烴濃度於露天燃燒地區之時空分佈特徵」,碩士論文,國立中山大學環境工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔