(3.236.231.14) 您好!臺灣時間:2021/04/14 02:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:梁敦傑
研究生(外文):Tun-Chieh Liang
論文名稱:以奈米零價鐵促進現地三氯乙烯厭氧生物降解
論文名稱(外文):Enhanced TCE anaerobic biodegradation with nano zero-valent iron
指導教授:高志明高志明引用關係
指導教授(外文):Chih-Ming Kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:91
中文關鍵詞:氫氣電子提供者奈米零價鐵雙金屬加強式生物處理三氯乙烯
外文關鍵詞:nanoscale zero-valent iron (nZVI)electron donorbimetallic particlesTrichloroethylene (TCE)enhanced bioremediationhydrogen
相關次數:
  • 被引用被引用:3
  • 點閱點閱:368
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要目的為瞭解奈米零價鐵做為氫氣提供來源,以加速含氯有機污染物於場址中自然衰減之可行性。本研究分為兩部份,第一部分的實驗中,以三氯乙烯(TCE, trichloroethylene)為目標污染物,利用生物批次實驗(microcosm)評估現地土壤與地下水在含有氫氣做為電子提供者下,與不同的氧化還原條件或是不同生物來源下,其降解程度之差別。第二部份之實驗則以批次實驗之方式,評估奈米零價鐵及奈米雙金屬產氫之可行性,並瞭解其產氫效率。
第一部分結果顯示,現地微生物於好氧及厭氧下皆具降解三氯乙烯之能力。此外,馴養後之好氧及厭氧污泥對三氯乙烯亦具良好之降解能力。以酚與糖蜜做為主要基質,可促進微生物好氧共代謝三氯乙烯。於厭氧狀態下,添加糖蜜及氫氣亦可促進現地微生物進行還原脫
氯作用去除三氯乙烯。添加奈米零價鐵之組別中,實驗組及控制組之三氯乙烯皆被完全降解。此結果顯示,奈米零價鐵之化學性還原脫氯作用為三氯乙烯被降解之優勢機制。因此,未來應提高三氯乙烯之濃度,或降低奈米零價鐵之添加劑量,以確實評估奈米零價鐵產生之氫
氣對三氯乙烯厭氧生物降解之影響。
第二部份結果顯示,零價鐵產氫效率大多高於50%,因此使用奈米零價鐵產氫為一有效率之產氫方式。而雙金屬奈米鐵產氫速率較一般奈米鐵佳,因此無論奈米零價鐵或雙金屬皆為優秀之釋氫物質。本研究結果顯示,奈米零價鐵為一優秀之釋氫物質。當含水層中注入適量奈米零價鐵時,其產生之氫氣可促進現地微生物之代謝,並幫助三氯乙烯之生物降解。使用奈米零價鐵之優點包括:(1)注入初期可迅速降低部份污染物濃度;(2)相較於貯存於鋼瓶之液態氫,奈米零價鐵提供氫氣之過程較為安全;及(3)可直接提供氫氣,氫氣產生過程無需進行微生物轉換機制。本研究成果顯示,以奈米零價鐵產氫促進現地微生物厭氧降解三氯乙烯應為一可行之方法。本研究之成果將可提供含氯有機物污染場址整治之參考。
The main objective of this study was to evaluate the feasibility of using nanoscale zero-valent iron (nZVI) as the source of hydrogen to enhance in situ anaerobic biodegradation of trichloroethylene (TCE). In the first part of this study, microcosms were constructed to evaluate the effects of different controlling factors [e.g., different redox conditions (aerobic and anaerobic conditions), different microorganisms (in situ microorganisms, activated sludge, and anaerobic sludge), and different sources of substrates and electron donors (phenol, cane molasses, hydrogen, and nZVI)] on TCE biodegradation. In the second part of this study, batch
experiments were conducted to evaluate the feasibility of hydrogen production by nZVI and bimetallic particles. Results from the microcosm study indicate that in-situ microorganisms were capable of degrading TCE under aerobic and anaerobic conditions. Results also show that TCE removal was more effective by activated sludge and anaerobic sludge. Aerobic biodegradation of TCE was
enhanced by the addition of phenol and cane molasses. Under anaerobic conditions, TCE removal could be improved when cane molasses and hydrogen were supplied. In addition, anaerobic TCE degradation was more effective with the presence of hydrogen. Results of microcosms conducted with the addition of nZVI reveal that TCE was degraded
completely in both live and autoclaved microcosms. This indicates that chemical reductive dechlorination seemed to dominate the removal of TCE in microcosms. Therefore, further studies with higher TCE concentrations or lower nZVI doses need to be conducted to determine the effects of the produced hydrogen on TCE biodegradation.
Results from the hydrogen production experiments indicate that efficiency of hydrogen production by nZVI ranged from 30% to 76%. Higher dose of nZVI addition resulted in higher amount of hydrogen
production. The total amounts of hydrogen production were correlated with the doses of nZVI. In addition, rates and efficiency of hydrogen production by bimetallic particles were better than those of nZVI. Results of the batch experiments reveal that nZVI and bimetallic particles had good efficiency on hydrogen production. This indicates that nZVI and bimetallic particles have high potential to be used as hydrogen producers.
In this study, a simple system consisted of only water and nZVI or bimetallic particles was applied to produce hydrogen. Although TCE in microcosms with nZVI addition was totally consumed by nZVI, results of
microcosms with hydrogen addition demonstrated that hydrogen was able to improve the efficiency of anaerobic TCE biodegradation. Thus, it may be feasible to use nZVI as the source of hydrogen to enhance in situ anaerobic biodegradation of TCE. The advantages of using nZVI as the source of hydrogen include: (1) rapid removal of significant contaminant
concentrations in the early stage of nZVI injection; (2) creation of a more reducing environment; (3) safer than liquid hydrogen, which is stored in steel containers; and (4) direct hydrogen supply without transfer of biological mechanisms compared to commercial hydrogen release compounds and other organic substrates. Results of this study suggest
that biological reductive dechlorination of TCE can be enhanced if proper doses of nZVI are supplied in situ. Knowledge and comprehension obtained in this study will be helpful in designing an enhanced in situ
anaerobic bioremediation system for a TCE-contaminated site.
謝誌............................................................................................................. I
摘要............................................................................................................II
Abstract .................................................................................................... IV
目錄.......................................................................................................... VI
圖目錄...................................................................................................... IX
表目錄........................................................................................................X
第一章 前言...............................................................................................1
1-1 研究緣起.......................................................................................1
1-1-1 氫氣促進生物降解.............................................................2
1-1-2 清淨能源............................................................................2
1-1-3 奈米零價鐵於環境整治上之應用....................................3
1-2 研究目的......................................................................................4
第二章 文獻回顧......................................................................................5
2-1 地下水污染..................................................................................5
2-2 地下水污染中三氯乙烯之來源...................................................6
2-2-1 三氯乙烯之化學性質......................................................11
2-3 三氯乙烯之生物處理技術........................................................15
2-3-1 影響生物降解之因子......................................................15
2-3-2 加強式生物處理法..........................................................19
2-3-3 三氯乙烯好氧與厭氧下之代謝......................................19
2-3-4 三氯乙烯之生物共代謝作用..........................................20
2-3-5 現地整治牆之應用..........................................................20
2-4 以零價鐵處理三氯乙烯污染之地下水....................................24
2-4-1 奈米級零價鐵之特性......................................................25
2-4-2 氫氣對於微生物代謝之影響..........................................25
2-4-3 以氫氣作為清淨能源之可行性......................................26
第三章 實驗設備與方法......................................................................28
3-1 實驗材料....................................................................................28
3-1-1 實驗用水與微生物來源..................................................28
3-1-2 添加碳源..........................................................................28
3-1-3 緩衝劑..............................................................................28
3-1-4 三氯乙烯..........................................................................29
3-1-5 奈米零價鐵......................................................................29
3-2 實驗設備....................................................................................29
3-2-1 合成奈米零價鐵反應器..................................................29
3-2-2 氣相層析儀/電子捕捉偵測器.........................................31
3-2-3 壓力計..............................................................................32
3-3 實驗方法與步驟........................................................................33
3-3-1 奈米零價鐵與雙金屬零價鐵製備..................................33
3-3-2 三氯乙烯之好氧降解......................................................34
3-3-3 三氯乙烯之厭氧降解......................................................37
3-3-4 零價鐵之產氫效率實驗..................................................41
3-3-5 實驗研究架構..................................................................41
第四章 結果與討論..............................................................................44
4-1 微生物好氧環境降解三氯乙烯................................................44
4-1-1 好氧酚共代謝組結果......................................................44
4-1-2 好氧糖蜜共代謝組結果..................................................45
4-1-3 好氧生物降解組結果......................................................45
4-1-4 好氧污泥生物降解組結果..............................................45
4-1-5 好氧污泥糖蜜生物共代謝組結果..................................46
4-2 微生物厭氧環境降解三氯乙烯................................................49
4-2-1 厭氧糖蜜共代謝組結果..................................................49
4-2-2 厭氧添加氫氣生物降解組結果......................................49
4-2-3 奈米零價鐵與生物降解組結果......................................50
4-2-4 厭氧污泥生物降解組結果..............................................50
4-2-5 厭氧污泥糖蜜生物共代謝組結果..................................51
4-2-6 土壤厭氧生物降解組結果..............................................51
4-3 產氫實驗結果............................................................................57
4-3-1 奈米零價鐵產氫結果......................................................57
4-3-2 雙金屬零價鐵產氫結果..................................................58
4-3-3 實驗結果討論..................................................................60
第五章 結論與建議..............................................................................61
5-1 結論............................................................................................61
5-2 建議............................................................................................63
參考文獻...................................................................................................64
附錄...........................................................................................................74
王鉦源,「以化學還原法製備奈米級銀鈀微粉」,國立成功大學化學工
程系碩士論文,2002。
司洪濤、李春正、HUFFMAN, G. L.,「節約能源與污染預防之燃料
電池技術介紹」,工安環保及綠色技術交流網,2002。
行政院環境保護署,我國土壤及地下水中氯化碳氫化合物污染管制標
準值, 2006。
行政院環境保護署毒災應變諮詢中心,「防救手冊 – 三氯乙烯」,
2007。
張德光,「結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中
之三氯乙烯」,國立中山大學環境工程研究所碩士論文,2005。
許益源、張王冠、呂慶慧、羅彗瑋、陳誼彰,「含重金屬土壤萃取及
地下水曝氣技術」,工業技術研究院化學工業研究所報告,1998。
郭雅鈴,「應用監測式自然衰減法整治受石油碳氫化合物污染之地下
水」,國立中山大學環境工程研究所碩士論文,2006。
陳谷汎,「地下水中MTBE 生物可分解性之研究」,國立中山大學環
境工程研究所博士論文,2005。
陳谷汎、高志明、蔡啟堂,「土壤及地下水生物復育技術」,工業污染
防治季刊,Vol.21, No.4, 136-157, 2002。
經濟部工業局,「土壤與地下水污染整治技術手冊─生物處理技術」,
第三章 (盧至人撰),2004。
雷世恩,「以生物處理法整治三氯乙烯及四氯乙烯污染之場址」,國立
中山大學環境工程研究所碩士論文,1999。
盧至人,「含氯有機溶劑(DNAPL)污染的現地生物復育」,環保月刊,
第2 卷,第3 期,第79-86 頁,2002。
韓吟龍,「以甲苯為主要基質現地好氧共代謝三氯乙烯之實驗室及現
地研究」,國立成功大學環境工程研究所博士論文,2007。
Agnolucci, P., ” Economics and market prospects of portable fuel cells”,
International Journal of Hydrogen Energy, 32, 4319-4328, 2007.
Bedient, P. B., Rifai H. S., Newell C. J., “Ground Water Contamination –
Transport and Remediation”, PTR Prentice-Hall, Inc., 604, 1999.
Bennett, P., Gandhi, D., Warner, S., Bussey, J., “In situ reductive
dechlorination of chlorinated ethenes in high nitrate groundwater”,
Journal of Hazardous Materials, 149, 568-573, 2007.
Bertin, L., Capodicasa, S., Occulti, F., Girotti, S., Marchetti, L., Fava, F.,
“Microbial processes associated to the decontamination and
detoxification of a polluted activated sludge during its anaerobic
stabilization”, Water Research, 41, 2407-2416, 2007.
Bockelmann, A., Ptak, T., and Teutsch, G., “An analytical quantification
of mass fluxes and natural attenuation rate constants at a former
gaswork site”, Journal. of Contaminant Hydrology, 53, 429-453,
2001.
Borden, R. C., Gomez, C. A., Becker, M. T., “Geochemical indicators of
natural bioremediation”, Ground Water, 33, 180-189, 1995.
Cam, D. and Gagni, S., “Determination of Petroleum Hydrocarbons in
Contaminated Soils Using Solid-Phase Microextraction with Gas
Chromatography - Mass Spectrometry”, Journal of Chromatography
Science, 39, 481-486, 2001.
Cao, J., Elliott, D., and Zhang, W. X., “Perchlorate reduction by
nanoscale iron particles”, Journal Nanopart. Research, 7, 499-506,
2005.
Chen, K. F., Kao, C. M., Hsieh, C. Y., Chen, S. C., Chen, Y. L., “Natural
Biodegradation of MTBE under Different Environmental Conditions: Microcosm and Microbial Identification Studies”,
Bulletin of Environ. Contamination and Toxicology, 74, 356-364,
2005.
Chen, K. F., Kao, C. M., Wang, J. Y., Chien, C. C., “Natural attenuation
of MTBE at Two Petroleum-Hydrocarbon Spill Sites”, 125, Journal
of Hazardous Materials, 2005.
Choe, S., Lee, S. H., Chang, Y. Y., Hwang, K. Y., and Khim, J., “Rapid
reductive destruction of hazardous organic compounds by nanpscale
Fe0”, Chemosphere, 42, 367-372 2002.
Clinton W. Hall, Permeable Reactive Barrier Technologies for
Contaminant Remediation,USEPA/600/R-98/125 September, 1998.
Cozzarelli, I. M., Bekins, B. A., Baedecker, M. J., Aiken, G. R.,
Eganhouse, R. P., and Tuccillo, M. E., “Progression of natural
attenuation progress at a crude oil spill site”, Journal of
Contaminant Hydrology, 53, 369-385, 2001.
Davis, J. W., Odom, J.M., Deweerd, K. A., Stahl, D. A., Fishbain, S.S.,
West, R. J., Klecka, G. M., and DeCarolis, J. G., “Natural
attenuation of chlorinated solvents at Area 6, Dover Air Force Base:
characterization of microbial community structure”, Journal of
Contaminant Hydrology, 57, 41-59, 2002.
Dunbar, J., Ticknor, L. O., and Kuske, C. R., ” Assessment of microbial
diversity in four southwestern United States soil by 16S rRNA gene
terminal restriction fragment analysis”, Appl. Environ.
Microbiology, 66: 2943-2950, 2000.
Dyer M., “Field investigation into the biodegration of TCE and BTEX at
a formermetal plating works”, Engineering Geology, 70, 321-329,
2003.
Elliott, D. W. and Zhang, W. X., “Field assessment of nanoscale
bimetallic particles for groundwater treatment”, Environment Science Technology, 35, 4922-4926, 2001.
Feng, J. and Lim, T. T., “Pathways and kinetics of carbon tetrachloride
and chloroform reductions by nano-scale Fe and Fe/Ni particles:
comparison with commercial micro-scale Fe and Zn”, Chemosphere,
59, 1267-1277, 2005.
Ferguson, J. F. and Pietari, J. M. H., “Anaerobic transformations and
bioremediation of chlorinated solvents”, Environment Pollution.,
107, 209-215, 2000.
Fries, M. R., Forney, L. J. and Tiedje, J. M., “Phenol and toluene
degrading microbial population from an aquifer in whish successful
trichloroethene cometabolism occurred”, Environment.
Microbiology, 3, 1523-1530, 1997.
Gavaskar A. R., Gupta N, Sass B. M., Janosy R. J., and O’Sullivan D.,
“Permeable barriers for groundwater remediation”, Battelle Press,
Columbus, U.S.A, 1998.
Gelsomino, A., Keijzer-Wolters, A.C., Cacco, G., and van Elsas, J.K.,
“Assessment of bacterial community structure in soil by polymerase
chain reaction and denaturing gradient gel electrophoresis”, Journal
of Microbiological Methods, 38, 1-15, 1998.
Gikas, P., “Kinetic responses of activated sludge to individual and joint
nickel (Ni(II)) and cobalt (Co(II)): An isobolographic approach”,
Journal of Hazardous Materials, 2006.
Glazier, R., Venkatakrishnan, Gheorghiu, F., Walata, L., Nash, R., and
Zhang, W.X., “Nanotechnology takes root”, Civil Eng., 73, 64-69,
2003.
Guo, G. L., Tseng, D. H., Huang, S. L., “Co-metabolic degradation of
trichloroethylene by Pseudomonas putida in a fibrous bed
bioreactor”, Biotechnology letter, 23, 1653-1657, 2001.
Gusmão, A. D., Campos, T. M. P., Vargas Jr., E. A., Nobre, M. M. M., “Laboratory tests for reactive barrier design”, Journal of Hazardous
Materials, 110, 105-112, 2004.
Heidrich, S. Weiß, H., and Kaschl, A., “Attenuation reactions in a
multiple contaminated aquifer in Bitterfeld (Germany)”, Environ.
Pollut., 129, 277-288, 2004.
Hughes, J. B., Duston, K. L., and Ward, C. H. Engineered bioremediation.
Ground Water Remediation Technologies Analysis Center
(GWRTAC), TE-02-03, 2002.
Hwang, S. and Cutright, T.J., “Preliminary Exploration of the
Relationships between Soil Characteristics and PAH Desorption and
Biodegradation, Environment International”, 1061, 3587-3594,
2003.
Johnson, S.J., Woolhouse, K.J., Prommer, H., Barry, D.A., and Christofi,
N., “Contribution of anaerobic microbial activity to natural
attenuation of benzene in groundwater”, Engineering Geology, 70,
343-349, 2003.
Kao C. M. and J. Prosser, “Evaluation of natural attenuation rate at a
gasoline spill site”, Journal of Hazardous Materials, 82, 275-289,
2001.
Kao, C. M. and Prosser, J. “Inrinsic bioremediation of trichloroethene and
chlorobenzene: field and laboratory studies”, Journal of Hazardous
Materials, 69, 67-79, 1999.
Kao, C. M. and Wang, Y.S., “Application of microbial enumeration
technique to evaluate the occurrence of natural bioremediation”,
Environmental Geology, 40, 622-631, 2001.
Kao, C. M., Chen, S. C., Liu, J. K., and Wang, Y. S., “Application of
microbial enumeration technique to evaluate the occurrence of
natural bioremediation”, Water Research, 35, 1951-1960, 2001.
Kao, C. M., Chen, S. C., Wang, J. Y., Chen, Y. L. and Lee S. Z., ”Remediation of PCE-contaminated aquifer by an in situ
two-layer biobarrier: laboratory batch and column studies”, Water
Research, 37, 27-38, 2003.
Kennedy, L. G. and Everett, J. W., “Microbial degradation of simulated
landfill leachate: solid iron/sulfur interactions”, Advances in
Environmental Research, 5, 103-116, 2001.
Kesserű, P., Kiss, I., Bihari, Z., Pál, K., Portörő, P. and Polyák, B.,”
Nitrate-dependent salicylate degradation by Pseudomonas
butanovora under anaerobic conditions”, Bioresource Technology,
96, 779-784, 2005.
Korte, N. E., Zutman, J. L., Schlosser, R. M., Liang, L., Gu, B., and
Fernando, Q., “Field application of palladized iron for the
dechlorination of trichloroethene”, Waste Management, 20,
687-694, 2000.
Lampron, K. J., Chiu, P. C., and Cha, D. K., “Reductive dehalogenation
of chlorinated ethenes with elemental iron: The role of
microorganisms”, Water Research, 35, 3077-3084, 2001.
Lampron, K. J., Chiu, P. C., Cha, D. K., ”Reductive Dehalogenation of
Chlorinated Ethenes with Elemental Iron: The Role of
Microorganisms”, Water Research, 35, 3077-3084, 2001.
Lee, T., Tokunaga, T., Suyama, A., and Furukawa, K., “Efficient
dechlorination of tetrachloroethylene in soil slurry by combined use
of an anaerobic desulfitobacterium sp. strain Y-51 and zero-valent
iron”, Journal of Bioscience & Bioengineering, 92, 453-458, 2001.
Lee, W., Batchelor, B., ” Abiotic reductive dechlorination of chlorinated
ethylenes by soil”, Chemosphere, 55, 705-713, 2004.
Lenczewski, M., Jardine, P., McKay, L., Layton, A., “Natural attenuation
of trichloroethylene in fractured shale bedrock”, Journal of
Contaminant Hydrology, 64, 151-168, 2003.
Li, X. Q. and Zhang, W. X., “Iron nanoparticles: the core-shell structure
and unique properties for Ni(II) sequestration”, Langmuir, 22,
4638-4642, 2006.
Lien, H. L. and Zhang, W. X., “Nanoscale iron particles for complete
reduction of chlorinated ethenes”, Colloid. Surface. A., 191, 97-105,
2001.
Lily, Y. Y. and D. P. Craig, “Metabolic Biomarkers for Monitoring in Situ
Anaerobic Hydrocarbon Degradation”, Environmental Health
Perspectives, 113, 62-67, 2005.
Lin, C. J., Lo, S. L., and Liou, Y. H., “Dechlorination of trichloroethylene
in aqueous solution by nobel metal-modified iron”, Journal of
Hazardous Materials, 116, 219-228, 2004.
Litster, S., McLean, G., ” PEM fuel cell electrodes”, overview, Journal of
Power Sources, 130, 61-76, 2004.
Liu, W. T., Linning, K. D., Nakamura, K., Mino, T., Matsuo, T., and
Forney, L. J., “Microbial community changes in biological
phosphate-removal systems on altering sludge phosphorus content”,
Microbiology, 146, 1099-1107, 2000.
Ma, X., Novak, P. J., Semmens, M. J., Clapp, L. W., Hozalski, R. M., ”
Comparison of pulsed and continuous addition of H2 gas via
membranes for stimulating PCE biodegradation in soil columns”,
Water research, 40, 1155-1166, 2006.
Maier, R. M., Pepper, I. L. and Gerba, C. P. Environmental microbiology.
Academic Press, San Diego, 2000.
Marsh, T. L., Saxman, P., Cole, J., and Tiedje, J., “Terminal restriction
fragment length polymorphism analysis program, a web-based
research tool for microbial community analysis”, Appl.
Environment Microbiology, 66, 3616-3620, 2000.
Meza, L., Cutright, T. J., El-Zahab, B. and Wang, P. ”Aerobic biodegradation of trichloroethylene using a consortium of five
bacterial strains”, Biotechnology letter, 25, 1925-1932, 2003.
Nadim, F., Hoag, G. E., Liu, S., Carley, R. J., Zack, P., ” Detection and
remediation of soil and aquifer systems contaminated with
petroleum products: an overview”, Journal of Petroleum Science
and Engineering, 26, 169–178, 2000.
Norris, R. D., “Benefits and concerns with application of the USEPA
protocol for monitored natural attenuation. In: Alleman, B. and
Leeson, A. (eds) Natual Attenuation of Chlorinated Solvents,
Petroleum Hydrocarbons, and Other Organic Compounds”, Battelle
Press, Ohio, 1999.
O''Donnell, A. G., and Gorres, H. E., “16S rDNA methods in soil
microbiology”, Current Opinion in Biotechnology. 10, 225-229,
1999.
Panagiotakis, I., Mamais, D., Pantazidou, M., Marneri, M., Parapouli, M.,
Hatziloukas, E., Tandoi, V., ”Dechlorinating ability of TCE-fed
microcosms with different electron donors”, Journal of Hazardous
Materials, 149, 582-589, 2007.
Peter, C. K. Lau and victor De Lorengo, “Genetic Engineering: The
frontier of Bioremediation”, ES&T, American Chemical Society,
1999.
Principi, P., Villa, F., Bernasconi, M., and Zanardini, E., “Metal toxicity
in municipal wastewater activated sludge investigated by
multivariate analysis and in situ hybridization”, Water Research, 40,
99-106, 2006.
Révész, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Mészáros, E.,
Mohr, A., Táncsics, A., Márialigeti, K. “Bacterial community
changes in TCE biodegradation detected in microcosm
experiments”, International Biodeterioration & Biodegradation, 58, 239-247, 2006.
Rosenthal, H., Adrian, L., and Steiof, M., “Dechlorination of PCE in the
presence of Fe0 enhanced by a mixed culture containing two
Dehalococcoids strains”, Chemosphere, 55, 661-669, 2004.
Roychoudhury, A. N. and Merrett, G. L., “Redox pathways in a petroleum
contaminated shallow sandy aquifer: iron and sulfate reductions”,
Sci. Total Environ., 366, 262-274, 2006.
Schroder, I., Johnson, E., de Vries, S., “Microbial ferric iron reductases”,
FEMS Microbiology, Review, 27, 427-447, 2003.
Singhal, N., Jaffe, P., Maier, W., Jho, E. H., ” The opposing effects of
bacterial activity and gas production on anaerobic TCE degradation
in soil columns”, Chemosphere, 69 1790-1797, 2007.
Smets, B. F. and Pritchard, P. H., “Elucidating the microbial component
of natural attenuation”, Current Opinion in Biotechnology, 14,
283-288, 2003.
Son, A., Lee, J., Chiu, P. G.., Kim, B. J. and Cha, D. K., “Microbial
reduction of perchloate with zero-valent iron”, Water research, 40,
2027-2032, 2006.
Sun, Y.P., Li, X.Q., Cao, J, Zhang, W.X., and Wang, H.P.,
“Characterization of zero-valent iron nanoparticles”, Adv. Coll. Inter.
Sci., 120, 47-56, 2006.
United States Environmental Protection Agency, ” Engineered
Approaches to In Situ Bioremediation of Chlorinated Solvents:
Fundamentals and Field Applications”, Solid Waste and Emergency
Response, 2000.
United States Environmental Protection Agency, Federal Insecticide,
Fungicide, and Rodenticide Act (FIFRA), 2005.
United States Environmental Protection Agency, How to Evaluate
Alternative Cleanup Technologies for Underground Storage Tank Sites-A Guide for Corrective Action Plan Reviewers, EPA
510-B-95-007, 1995.
United States Environmental Protection Agency, Monitored natural
attenuation of petroleum hydrocarbons: U.S. EPA remedial
technology fact sheet, EPA/600/F-98/601, 1999.
United States Environmental Protection Agency, Soil and Groundwater
Treatment Handbook, 2003.
Urakawa, H., Kita-Tsukamoto, K., and Ohwada, K., ”Microbial diversity
in marine sediments from Sagami Bay and Tokyo Bay, Japan, as
determined by 16S rRNA gene analysis”, Microbiology, 145,
3305-3315, 1999.
Urrutia, M. M., Roden E.E., Fredrickson J. K., and Zachara J. M.,
“Microbial and surface chemistry controls on reduction of synthetic
Fe(III) oxide minerals by the dissimilatory iron-reducing bacterium
Shewanella alga”, Geomicrobiology J. 15, 269-291,1998.
Watanabe, K., Kodama, Y., Syutsubo, K., and Harayama, S., “Molecular
characterization of bacterial populations in petroleum-contaminated
groundwater discharged from underground crude oil storage
cavities”, Applied and Environmental Microbiology, 66, 4803-4809,
2000.
Zhang, W. X. “Nanoscale iron particles for environmental remediation: an
overview”, Journal of Nanoparticle Research, 5, 323-332, 2003.
Zhang, W., Wang, C. B., and Lien, H. L. Treatment of chlorinated organic
contaminants with nanoscale bimetallic particles. Catalysis Today,
40, 387-395, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔