(3.238.250.105) 您好!臺灣時間:2021/04/20 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏嘉亨
研究生(外文):Chia-Heng Yen
論文名稱:多管式TiO2/Al2O3複合膜同步電混凝/電過濾處理光電產業廢水之效能評估
論文名稱(外文):Performance Evaluation of Treating Optoelectronic IndustrialWastewaters by a Simultaneous Electrocoagulation/ElectrofiltrationProcess Using Multi-Tubular TiO2/Al2O3 Composite Membranes
指導教授:楊金鐘楊金鐘引用關係
指導教授(外文):Gordon C. C. Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:126
中文關鍵詞:液晶平面顯示器廢水管狀無機複合膜電混凝電過濾
外文關鍵詞:Tubular inorganic composite membraneElectrocoagulationLCD industrial wastewaterElectrofiltration
相關次數:
  • 被引用被引用:18
  • 點閱點閱:526
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:0
國內水資源缺乏,且高科技產業又極需大量用水,因此,本研究旨在利用自行製備之管狀氧化鈦/氧化鋁無機複合膜搭配多管式同步電混凝/電過濾處理模組,進行光電產業廢水處理效能探討,並評估處理水回收再利用之可能性。
本研究首先利用溶膠-凝膠法製備之二氧化鈦漿液,再使用浸漿成膜法(Dip-Coating)將浸鍍液披覆於利用擠出成形法製備的Al2O3管狀支撐體上,並於室溫乾燥後進行高溫燒結,以獲得氧化鈦/氧化鋁無機複合膜。接著,將製備好之氧化鈦/氧化鋁無機複合膜以同步電混凝/電過濾程序處理光電廠之二種LCD (TFT-LCD及STN-LCD) 廢水,並於濃縮液迴流的操作方式下,探討電場強度、過濾壓差及掃流速度對於濾液品質之影響,並利用逐一因素法找出最佳操作參數。本研究亦利用上述最佳操作參數探討模組其它操作方式(濃縮液不迴流及濾液再處理)對濾液品質之影響。此外,探討逆洗時間與週期對薄膜濾液通量回復性之影響亦是本研究之重點。
研究結果顯示,在濃縮液迴流的最佳操作條件下,TFT-LCD及STN-LCD廢水的濁度和TOC去除率都可以達到98%以上,廢水中的陰離子(NO3-、NO2-、Cl-及SO42-)則有90%以上之去除效果,而COD和TKN亦能有88~91%的去除率。在變換操作模式方面,實驗結果顯示,在濃縮液不迴流的情況下,對濾液水質的改善並不明顯,但在同一處理時間內之濾液累積量較大。至於濾液再處理方面,處理水品質則有進一步改善之現象,此法可以讓水中的陰離子(NO3-、NO2-、Cl-及SO42-)去除率提升至95%以上,亦能讓TFT-LCD廢水之濾液達到放流水標準。
在處理水回收再利用方面,因為處理水pH值及導電度過高,導致其應用性受到限制,但根據美國建議之冷卻系統補充水質標準(如附表1),並無限制補充水之pH值及導電度,而濾液的其他水質項目已能符合直接應用於工廠冷卻補充水之標準。若欲應用於低階之回收水再利用(例如:農業灌溉用水及生活雜用水)上,在有pH值及導電度限制下,則須於處理程序中搭配pH值調整槽,改善導電度以及pH值之問題。綜合實驗結果,利用同步電混凝/電過濾處理技術應用於LCD廢水處理上確實具有其發展之潛力。
Water is essential for life as well as industrial growth. Therefore, this research is mainly to explore the treatment capacity of LCD (Liguid Crystal Display) industrial wastewater recycling by a simultaneous electrocoagulation/electrofiltration (EC/EF) process using laboratory-prepared multi-tubular TiO2/Al2O3 composite membranes.
First, tubular membrane supports of Al2O3 were prepared by the extrusion method. Then the slip composed of nanoscale TiO2 (prepared by sol-gel process) was applied on the aforementioned tubular membrane supports by the dip-coating method, followed by sintering to obtain tubular TiO2/Al2O3 composite membranes. Then, two types of LCD industrial wastewaters (designated TFT-LCD wastewater and STN-LCD wastewater, respectively) from different LCD fabrication plants were treated by EC/EF process using TiO2/Al2O3 composite membranes. Moreover, the permeate qualities were evaluated under the recirculation-mode operation. In addition, the effects of different operating parameters (i.e., electric field strength, trans-membrane pressure, and crossflow velocity) on membrane flux and permeate quality were evaluated. Relations of the water quality and the different operation modes (i.e., the recirculation mode, flow-through mode, and secondary treatment mode) were also discussed. Finally, the effects of changing the backwash time and backwash cycle on membrane flux were investigated.


In the recirculation mode, both kinds of wastewater achieved a satisfactory organics and anion removal. An average of about 90% of COD (Chemical Oxygen Demand) and TKN (Total Kjeldahl Nitrogen) could be removed. For anions (i.e., NO3-, NO2-, Cl- and SO42-), their removal efficiencies were all over 90%. Furthermore, TOC (Total Organic Carbon) and turbidity also had removal efficiencies of over 98%. When the operation mode was changed from the recirculation mode to flow-through mode, the changes of permeate quality were not obvious. But the cumulative quantity of permeate of the flow-through mode was greater than that of the recirculation mode. As for the experimental result of the secondary treatment mode, the permeate qualities were found to be improved. In this case, an average removal of over 95% of NO3-, NO2-, Cl-, and SO42- could be obtained.
According to experimental results shown above, the treated water could be recycled and reused as the cooling tower make-up water if its pH and conductivity values were reduced. However, these problems could be easily resolved by proper adjustments of pH. Overall speaking, the tubular TiO2/Al2O3 composite membranes and simultaneous EC/EF treatment module employed in this work are capable of treating LCD industrial wastewater for the purpose of reclamation.
聲明切結書...............................................i
謝誌..........................................................ii
摘要.........................................................iii
Abstract...................................................v
目錄.......................................................vii
表目錄...................................................xii
圖目錄..................................................xiii
照片目錄..............................................xvi
第一章 前言..................................1
1.1 研究緣起..........................................1
1.2 研究目的..........................................3
1.3 研究項目..........................................4
第二章 文獻回顧...................................7
2.1 液晶平面顯示器製程簡介..............7
2.1.1 液晶平面顯示器之發展...............7
2.1.2 液晶平面顯示器之技術與種類...7
2.1.3 液晶顯示器製程廢水與處理技術...10
2.2 電混凝理論...................................17
2.2.1 電混凝基本原理........................17
2.2.2 電混凝技術之相關研究............21
2.3 薄膜單元.......................................23
2.3.1 薄膜定義與特性........................ 23
2.3.2 薄膜分離程序............................23
2.3.3 薄膜組件之形式........................25
2.4 掃流薄膜過濾...............................27
2.5 掃流薄膜電過濾........................29
2.6 無機薄膜介紹........................35
2.6.1 無機薄膜之發展與特性........................35
2.6.2 管狀無機濾膜之應用........................37
第三章 實驗材料、設備與方法........................40
3.1 實驗材料........................40
3.1.1 TFT-LCD與STN-LCD廢水........................40
3.1.2 其它試藥及材料........................40
3.2 實驗設備........................42
3.2.1管狀無機濾膜之製備........................42
3.2.2 蒸氣壓氣體滲透偵測裝置........................43
3.2.3 多管式同步電混凝/電過濾處理模組裝置......43
3.2.4 其他設備及儀器........................45
3.3 實驗方法........................46
3.3.1 同步電混凝/電過濾處理系統之操作...............46
3.3.2 同步電混凝/電過濾處理模組之濾膜逆洗......48
3.4 管狀無機膜性質分析........................48
3.4.1 掃描式電子顯微鏡 ........................48
3.4.2 管狀無機濾膜之孔徑分布測定........................49
3.4.3 阻截分子量測定........................49
3.5 LCD廢水、濾液品質分析方法........................50
第四章 結果與討論........................51
4.1 管狀無機複合膜之性質分析........................51
4.1.1 過濾層表面與橫截面觀測........................51
4.1.2 孔徑分佈........................53
4.1.3 阻截分子量........................54
4.2 廢水基本性質分析........................57
4.2.1 顆粒粒徑分析........................57
4.2.2 顆粒界達電位之量測........................58
4.2.3 其它水質項目特性分析........................60
4.3 同步電混凝/電過濾處理模組之操作條件探討....63
4.3.1 電場強度對濾液通量及品質之影響..................63
4.3.2 過濾壓差對濾液通量及品質之影響.................71
4.3.3 掃流速度對濾液通量及品質之影響.................74
4.3.4 最佳操作條件對LCD廢水之處理效果.............77
4.4 改變模組操作方式對處理成效之影響.................80
4.5 逆洗週期與時間.................83
4.6 電混凝於同步電混凝/電過濾處理程序中之影響..86
4.7 處理水循環再利用之可行性探討.................90
第五章 結論與建議.................93
5.1 結論.................93
5.2 建議.................95
參考文獻.................96
附表.................107
碩士在學期間發表之學術論文.................109


表目錄
表2-1.TFT-LCD製造業主要廢棄物清理現況彙集...........14
表2-2.各種形式膜組之優缺點比較…………………26
表2-3.國內利用外加電場掃流過濾於水處理相關研究成果摘要..32
表2-4.國外利用外加電場掃流過濾於水處理相關研究成果摘要..34
表4-1.TFT-LCD與STN-LCD廢水之水質特性分析.......62
表4-2.STN-LCD廢水之濾液水質分析……………66
表4-3.TFT-LCD廢水之濾液水質分析…………………67
表4-4.TFT-LCD與STN-LCD廢水其濃縮液與濾餅之鋁含量分析.........................69
表4-5.兩種LCD廢水經同步電混凝/電過濾膜組處理之濾液水質 分析(改變過濾壓差).........................................73
表4-6.兩種LCD廢水經同步電混凝/電過濾膜組處理之濾液水質 分析(改變掃流速度)……76
表4-7.TFT-LCD廢水進行最佳操作條件下處理前後之水質分析...77
表4-8.STN-LCD廢水進行最佳操作條件下處理前後之水質分析..78
表4-9.TFT-LCD廢水在不同操作模式下之濾液品質分析比較.......81
表4-10.STN-LCD廢水在不同操作模式下之濾液品質分析比較......82

圖目錄
圖1-1 研究架構圖...................................................5
圖2-1 液晶顯示器分解圖...............................8
圖2-2 液晶平面顯示器分類結構圖............................10
圖2-3 TFT製程與廢水來源流程圖..................11
圖2-4 LCD製程與廢水來源流程圖....................12
圖2-5 膠體粒子懸浮於水溶液中所形成之電雙層結構...19
圖2-6 DLVO理論之高濃度電解質下的位能曲線圖....19
圖2-7 薄膜孔洞大小與其適合之分離程序示意圖....24
圖2-8 掃流過濾之原理.....................................27
圖2-9 掃流電過濾中顆粒受力狀況.........................29
圖2-10 非對稱型無機膜示意圖...................................36
圖3-1 管狀無機複合膜燒結升溫速率圖...................43
圖3-2 同步電混凝/電過濾處理系統示意圖...............44
圖3-3 岀流水迴流操作示意圖.............................47
圖3-4 濃縮液不迴流操作示意圖..........................47
圖3-5 濾液再處理操作示意圖.............................48
圖4-1 管狀無機複合膜表面元素組成....................52
圖4-2 管狀無機複合膜孔徑分布圖.............................54
圖4-3 管狀無機複合膜對聚乙二醇之視率除率大小......56
圖4-4 TFT-LCD廢水之粒徑分布..............57
圖4-5 STN-LCD廢水之粒徑分布................................58
圖4-6 TFT-LCD廢水之懸浮固體其界達電位與pH值之關係…59
圖4-7 STN-LCD廢水之懸浮固體其界達電位與pH值之關係.......59
圖4-8 TFT-LCD廢水其濾液通量隨施加電場強度與處理時間之關係 圖....................................................64
圖4-9 STN-LCD廢水濾液通量隨施加電場強度與處理時間之關係圖......................................................64
圖4-10 TFT-LCD廢水其部份濾液品質(Turbidity、COD、TKN及TOC)隨施加電場強度變化之關係圖.....................70
圖4-11 STN-LCD廢水其部份濾液品質(Turbidity、COD、TKN及TOC)隨施加電場強度變化之關係圖....70
圖4-12 TFT-LCD廢水其濾液通量隨過濾壓差與處理時間之關係圖...............................................................71
圖4-13 STN-LCD廢水其濾液通量隨過濾壓差與處理時間之關係圖............................................................72
圖4-14 TFT-LCD廢水其濾液通量隨不同掃流速度與處理時間之關係圖..........................................74
圖4-15 STN-LCD廢水其濾液通量隨不同掃流速度與處理時間之關係圖..........................................75
圖4-16 TFT-LCD廢水其不同逆洗週期之濾液通量比較圖...............83
圖4-17 STN-LCD廢水其不同逆洗週期之濾液通量比較圖..............84
圖4-18 TFT-LCD廢水其不同逆洗時間之濾液通量比較圖...............85
圖4-19 STN-LCD廢水其不同逆洗時間之濾液通量比較圖..............85
圖4-20 TFT-LCD廢水濃縮液中顆粒粒徑之分佈圖.....87
圖4-21 STN-LCD廢水濃縮液中顆粒粒徑之分佈圖.......87
圖4-22 TFT-LCD廢水濃縮液中顆粒粒徑之分佈隨施加電場強度之變化圖.............................................88
圖4-23 STN-LCD廢水濃縮液中顆粒粒徑之分佈隨施加電場強度之變化圖............................................89
圖4-24 添加HCl於TFT-LCD廢水濾液再處理程序之濾液中其導電度與pH值之變化........................91

照片目錄
照片3-1 同步電混凝/電過濾處理設備照片.........44
照片4-1 管狀無機複合膜表面影像................51
照片4-2 管狀無機複合膜橫截面影像...............52
1.林穎毅,“LCD引領台灣光電產業創造成長”,光連:光電產業與技術情報,第68期,第22-25頁 (2007)。
2.工業技術研究院產業技術資訊服務推廣計畫(ITIS智網), “2010年台灣平面顯示器產業達兩兆台幣”,http://www.itis.org.tw/rptDetail.screen?industry=1&ctgy=2&rptidno=98A3CDF10448C0404825742D0018C15A (2008)。
3.經濟部水利署科學園區用水量統計查詢系統, http://wuss.wra.gov.tw/scipark.asp#。
4.Bhave, R. R., Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Rehinhold, New York, U.S.A. (1991).
5.謝旻樺,“以電場掃流超過濾分離牛血清蛋白溶液”,碩士學位論文,私立中原大學化學工程學系,桃園縣 (1999)。
6.蔡秀惠,“利用外加電場掃流微過濾程序處理化學機械研磨廢水之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2001)。
7.陳富政,“利用同步電混凝/電過濾技術處理化學機械研磨廢水”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
8.Yang, G. C. C. and C. M. Tsai, “Performance Evaluation of a Simultaneous Electrocoagulation and Electrofiltration Module for the Treatment of Cu-CMP and Oxide-CMP Wastewater,” Journal of Membrane Science, Vol. 286, pp. 36-44 (2006).
9.黃淑君,“不織布薄膜反應槽好氧生物分解TFT-LCD製程有機廢水程序功能及生態變化之研究”,碩士學位論文,國立成功大學環境工程學系,台南市 (2006)。
10.張蕙蘭,“國際環保浪潮下台灣平面顯示器產業的永續發展之道”,永續產業發展雙月刊,第19期,第10-10頁(2005)。
11.王友志,“STN液晶顯示面板清洗替代技術”,半導體科技,第32期,技術專文 (2002)。
12.Chen, T. K. and J. N. Chen, “Combined Membrane Bioreactor (MBR) and Reverse Osmosis (RO) System for Thin-Film Transistor-Liquid Crystal Display TFT-LCD, Industrial Wastewater Recycling,” Water Science and Technology, Vol. 50, pp. 99-106 (2004).
13.Chen, T. K., C. H. Ni, and J. N. Chen, “Nitrification-Denitrification of Optoelectronic Industrial Wastewater by Anoxic/Aerobic Process,” Journal of Environmental Science and Health PartA, Vol. 38, pp. 2157-2167 (2003).
14.陳廷光、陳重男、倪振鴻,“生物薄膜程序處理TFT-LCD製程有機廢水之研究”,第二十七屆廢水處理技術研討會論文集,台北市(2002)。
15.Park, S. J., T. I. Yoon, J. H. Bae, H. J. Seo, and H. J. Park, “Biological Treatment of Wastewater Containing Dimethyl Sulphoxide from the Semiconductor Industry,” Process Biochemistry, Vol. 36, pp. 579-589 (2001)。
16.鄭智和,“TFT-LCD製造業廢棄物清理現況與資源化探討”,永續產業發展雙月刊,第19期,第24-24頁 (2005)。
17.林宏霖,“探討生物分解光電產業製程廢水之反應動力特性研究”,碩士學位論文,國立成功大學環境工程學系,台南市(2006)。
18.Lin, S. H. and C. S. Chang, “Treatment of Optoelectronic Industrial Wastewater Containing Various Refractory Organic Compounds by Ozonation and Biological Method,” Journal of Chinese Institute of Chemical Engineers, Vol. 37, pp. 527-533 (2006).
19.Chen, T. K., C. H. Ni, Y. C. Chan, and M. C. Lu, “MBR/RO/Ozone Processes for TFT-LCD Industrial Wastewater Treatment and Recycling,” Water Science and Technology, Vol. 50, pp. 411-419 (2005).
20.廖威智,“薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收再利用之研究”,碩士學位論文,國立成功大學環境工程學系,台南市 (2003)。
21.Ozturk, N. and T. E. Bektas, “Nitrate Removal from Aqueous Solution by Adsorption onto Various Materials,” Journal of Hazardous Materials, Vol. 112, pp. 155-162 (2004).
22.Mollah, M. Y. A., R. Schennach, J. R. Parga, and D. L. Coake, “Electrocoagulation (EC)-Science and Applications,” Journal of Hazardous Materials, Vol. B84, pp. 29-41 (2001).
23.經濟部工業局,“化學混凝處理單元設計與操作”,工業污染防治技術手冊,第26期,第6-6頁 (1990)。
24.Larry, D. B., J. F. Jukins, and B. L. Weand, Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, New Jersey (1982).
25.Larue, O. E., C. Vu. Vorobiev, and B. Durand, “Electrocoagulation and Coagulation by Iron of Latex Particles in Aqueous Suspensions,” Separation and Purification Technology, Vol. 31, pp. 177-192 (2003).
26.Chen, X., G. Chen, and P. L. Yue, “Separation of Pollutants from Restaurant Wastewater by Electrocoagulation,” Separation and Purification Technology, Vol. 19, pp. 65-76 (2000).
27.Gurses, A., M. Yalcin, and C. Dogar, “Electrocoagulation of Some Reactive Dye: a Statistical Investigation of Some Electrochemical Variables,” Waste Management, Vol. 22, pp. 491-499 (2002).
28.Pouet, M. F. and A. Grasmick, “Urban Wastewaer Treatment by Electrocoagulation and Flotation,” Water Science and Technology, Vol. 31, pp. 275-283 (1995).
29.Kobya, M., O. T. Can, and M. Bayramoglu, “Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes,” Journal of Hazardous Materials, Vol. B100, pp. 163-178 (2003).
30.Lai, C. L. and S. H. Lin, “Electrocoagulation of Chemical Mechanical Polishing (CMP) Wastewater from Semiconductor Fabrication,” Chemical Engineering Journal, Vol. 95, pp. 205-211 (2003).
31.Koparal, A. S. and U. B. Ogutveren, “Removal of Nitrate from Water by Electroreduction and Electrocoagulation,” Journal of Hazardous Materials, B89, pp. 83-94 (2002).
32.Mulder, M., Basic Principles of Membrane Technology, Second Edition, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1997).
33.Bae, D. S., D. S. Cheong, K. S. Han, and S. H. Choi, “Fabrication and Microstructure of TiO2-Al2O3 Composite Membranes with Ultrafine Pores,” Ceramics International, Vol. 24, pp. 25-30 (1998).
34.歐陽嶠暉,“下水道工程學”,第三版,長松文化興業股份有限公司,台北市 (2000)。
35.潘帥宇,“沉浸式薄膜過濾系統臨界濾速之探討”,碩士學位論文,淡江大學化學工程研究所,台北縣 (2002)。
36.鄭領英、王學松,“膜的高科技應用”,五南圖書出版股份有限公司,台北市 (2003)。
37.黃國楨,“掃流微過濾之發展與應用”,中國化學工程學會會刊,第51卷第3期,第2-13頁 (2004)。
38.Rippeger, S. and J. Altmann, “Crossflow Microfiltration – State of the Art,”Separation and Purification Technology, Vol. 26, pp. 19-31 (2003).
39.蔡杰裕,“鈀膜反應器進行乙醇脫氫反應之研究”,碩士學位論文,逢甲大學化學工程學系,台中市 (2002)。
40.Weigert, T., J. Altmann, and S. Reppeerger, “Crossflow Electrofiltration in Pilot Scale,” Journal of Membrane Science, Vol. 159, pp. 253-262 (1999).
41.Bowen, W. R. and H. A. M. Sabuni, “Pulsed Electrokinetic Cleaning of Cellulose Nitrate Microfiltration Membrane,” Industrial and Engineering Chemistry Research, Vol. 31, pp. 515-523 (1992).
42.Huotari, H. M., I. H. Husman, and G. Tragardh, “Electrically Enhanced Crossflow Membrane Filtration of Oily Waste Water Using the Membrane as a Cathode,” Journal of Membrane Science, Vol. 156, pp. 46-60 (1999).
43.Jagannadh, S. N. and H. S. Muralidhara, “Electrokinetic Methods to Control Membrane Fouling,” Industrial and Engineering Chemistry Research, Vol. 35, pp. 1133-1140 (1996).
44.章夢軒,“電場作用下之掃流過濾特性”,碩士學位論文,中原大學化學工程學系,中壢市 (1996)。
45.楊叢印,“結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
46.江謝令涵、李公哲、翁堉翔,“以外加電場輔助掃流過濾處理水中砷及腐植酸”,第二十八屆廢水處理技術研討會論文集光碟,台中市 (2003)。
47.Yang, G. C. C. and C. J. Li, “Electrofiltration of Silica Nanoparticle Containing Wastewater Using Tubular Ceramic Membranes,” Separation and Purification Technology, Vol. 58, pp. 159-165 (2007).
48.Yang, G. C. C. and C. M. Tsai, “Preparation of Carbon Fibers/Carbon/Alumina Tubular Composite Membranes and their Applications in Treating Cu-CMP Wastewater by a Novel Electrochemical Process,”Journal of Membrane Science, Vol. 321, pp. 232-239 (2008).
49.Wakeman, R. J. and E. S. Tarleton, “Membrane Fouling Prevention in Crossflow Microfiltration,” Chemical Engineering Science, Vol. 42, pp. 829-842 (1987).
50.Akay, G. and R. J. Wakeman, “Electric Field Enhanced Crossflow Microfiltration of Hydrophobically Modified Water Soluble Polymers,” Journal of Membrane Science, Vol. 131, pp. 229-236 (1997).
51.Okada, K., T. Nagase, Y. Ohinshe, A. Nishihan, and Y. Akagi, “Correlations of Filtration Flux Enhanced by Electric Fields in Crossflow Microfiltration,” Journal of Chemical Engineering of Japan, Vol. 30(6), pp. 1054-1058 (1997).
52.Hong, S., R. S. Faibish, and M. Elimelech, “Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions,” Journal of Colloid and Interface Science, Vol. 196, pp. 267-277 (1997).
53.Burggraaf A. J., K. Keizer, and B. A. V. Hassel, “Ceramic Nanostructure Materials, Membranes and Composite Layers,” Solid State Ionics, Vol. 32/33 (Part 2), pp. 771-782 (1989).
54.吳憶媚,“陶瓷薄膜回收處理廢潤滑油之評估”,碩士學位論文,國立台灣大學化學工程學研究所,台北市 (2000)。
55.李權家,“管狀無機膜製備及其於化學機械研磨廢水處理之應用”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2006)。
56.楊金鐘、張原豪,“利用二氧化鈦/氧化鋁無機膜同步電混凝/電過濾處理STN-LCD廢水之初步探討”,第三十二屆廢水處理技術研討會論文集,高雄市 (2007)。
57.張原豪,“自製管狀氧化鈦/氧化鋁複合膜同步電混凝/電過濾處理化學機械研磨廢水之效能評估”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2008)。
58.楊金鐘,“淺談無機濾膜及其於廢水處理之應用”,化工技術,第16卷第7期,第180頁 (2008)。
59.Bodzek, M. and K. Konieczny, “Comparision of Ceramic and Capillary Membranes in the Treatment of Natural Water by Means of Ultrafiltration and Microfiltration,” Desalination, Vol. 119, pp. 191-198 (1998).
60.Afonso, M. D., A. M. B. A1ves, and M. Mohsenb, “Crossflow Microfiltration of Marble Processing Wastewaters,” Desalination, Vol. 149, pp. 153-162 (2002).
61.Ahn, K. H., J. H. Song and H. Y. Cha, “Application of Tubular Ceramic Membranes for Reuse of Wastewater from Buildings,” Water Science and Technology, Vol. 38, pp. 373-382 (1998).
62.Konieczny, K., M. Bodzek, and M. Rajca, “A Coagulation-MF System for Water Treatment Using Ceramic Membranes,” Deaslination, Vol. 198, pp. 92-101 (2006).
63.Huang, P., N. Xu, J. Shi, and Y. S. Lin, “Characterization of Asymmetric Ceramic Membrane by Modified Permporometry,” Journal of Membrane Science, Vol. 116, pp. 301-305 (1996).
64.鄭人豪,“利用奈米級TiO2薄膜光催化處理氯苯水溶液之研究” ,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2003)。
65.Cleveland, C. T., T. F. Seacord, and A. K. Zander, “Standardized Membrane Pore Size Characterization by Polyethylene Glycol Rejection,” Journal of Environmental Engineering, Vol. 128, pp. 399-407 (2002).
66.行政院環保署環境檢驗所,「水中氫離子濃度指數測定方法-電極法」,NIEA W424.51A (2004)。
67.行政院環保署環境檢驗所,「水中導電度測定方法-導電度計法」,NIEA W203.51B (2001)。
68.行政院環保署環境檢驗所,「水中濁度檢測方法-濁度計法」,NIEA W219.52C (2006)。
69.行政院環保署環境檢驗所,「水中總溶解固體及懸浮固體檢測方法-103℃∼105℃乾燥」,NIEA W210.57A (2001)。
70.行政院環保署環境檢驗所,「水中化學需氧量檢測方法-重鉻酸鉀迴流法」,NIEA W515.54A (2007)。
71.行政院環保署環境檢驗所,「水中銀、鎘、鉻、銅、鐵、錳、鎳、鉛及鋅檢測方法-火焰式原子吸收光譜法」,NIEA W306.52A (2004)。
72.行政院環保署環境檢驗所,「水中鹼度檢測方法-滴定法」,NIEA W449.00B (2003)。
73.行政院環保署環境檢驗所,「水中陰離子檢測方法-離子層析法」,NIEA W415.52B (2003)。
74.行政院環保署環境檢驗所,「水中氨氮檢測方法-靛酚比色法」,NIEA W448.51B (2003)。
75.Singh, S., K. C. Khulbe, T. Matsuura, and P. Ramamurthy, “Membrane characterization by solute transport and atomic force microscopy,” Journal of Membrane Science, Vol. 142, pp.111-127 (1998).
76.Bowen, W. R., R. S. Kingdon, and H. A. M. Sabuni, “Electrically Enhanced Separation Process: The Basis of In Situ Intermittent Electrolytic Membrane Cleaning (IIEMC) and In Situ Electrolytic Membrane Restoration (IEMR),” Journal of Membrane Science, Vol. 40, pp. 219-229 (1989).
77.行政院環境保護署,「放流水標準」,環署水字第0960065740號 (2007)。
78.顏幸苑,“都市污水回收再利用用途與水質要求—節水開源由再利用開始”,節約用水季刊,第17期,http://www.wcis.itri.org.tw/Upload/QUART1/000268/17-10.pdf (2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔