(3.236.6.6) 您好!臺灣時間:2021/04/23 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林書羽
研究生(外文):Shu-Yu Lin
論文名稱:含氯有機物污染場址之健康風險評估
論文名稱(外文):Application of Health Risk Assessment on a Chlorinated-Solvent Contaminated Site
指導教授:高志明高志明引用關係
指導教授(外文):Jimmy kao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:197
中文關鍵詞:風險評估風險基準矯正行動評估準則(RBCA)含氯有機物不確定性分析
外文關鍵詞:Sensitivity@RISKRBCAMonte CarloRisk assessmentRiskUncertainty
相關次數:
  • 被引用被引用:4
  • 點閱點閱:610
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來美國環保署針對絕大多數常見土壤及地下水中之污染物,對其危害性、劑量效應及假設中最嚴重之暴露途徑,做一風險推估,而發表了基於風險度的土壤整治初步目標(Draft Guidance for Soil Screening Level)及最保守之允許值。美國材料試驗協會(American Society for Testing and Materials ,簡稱ASTM) 也於1995年所提出基於層次性(Tiered Approach)的「風險基準矯正行動應用於石油洩漏場址之評估準則(Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites ,簡稱RBCA),E1739號準則」,修訂版並於2002年公佈;於2004年再提出「風險基準矯正行動應用於化學洩漏場址之評估準則(RBCA),E2081號準則」,其評估步驟的標準化,成為國內外最常被引用之評估模式,使風險評估的步驟因而更加標準化。
本研究主要以受含氯有機物污染之場址進行風險評估分析。本場址曾因含氯有機物之洩漏而造成地下水之污染。地下水中所檢測出濃度較高之含氯有機物,包括三氯乙烯(trichloroethylene, TCE)及1,1-二氯乙烯(dichloroethylene, DCE),其濃度檢測值皆超出第二類管制標準(0.05及0.07 mg/L),且有隨地下水往下游移動之趨勢。本研究目的包含: (1)針對受含氯有機物污染之場址進行風險評估,評估下游受體之風險;(2)分析致癌風險與可能之污染傳輸途徑,提供管理者未來整治場址規劃與技術選擇之依據;(3)加入現地微生物之評估,以區分自然衰減作用對風險評估之影響及(4)以蒙地卡羅分析法針對場址進行不確定性分析。主要方法架構則分為兩個部份:(1)利用Groundwater Service, Inc.所建置之「健康風險評估模擬系統1.3版(RBCA Tool Kit for Chemical Releases 1.3)」及我國行政院環保署健康風險評估模擬系統,進行第二層次之風險評估模擬;(2)應用商用軟體@RISK配合微軟公司之EXCEL試算表,進行蒙地卡羅法來分析風險機率分佈,進行第三層次分析。
本研究以研究場址三年之調查數據進行模擬,研究結果顯示,下游住宅區於土壤地下水中是否有生物降解機制之產生其評估可知,若場址中具有微生物降解機制存在時,傳輸途徑之總致癌風險與危害指數、關切污染物之總致癌風險、關切污染物之危害指數等三方面,均較上游為低。顯示污染物濃度受微生物降解,而使下游受體之總致癌風險與危害指數降低。

國內外風險評估模式之回推之整治目標濃度結果顯示,以法規之管制值及檢測結果來看,地下水是最需整治的部份。但若以風險評估角度而言,在考量相關參數(如暴露途徑、危害指數……等)情況下顯示,場址內及附近居民只要不以地下水為飲用及使用之水源,人體健康風險值並未超過基準值,不進行整治,亦不會影響人體健康。而場址內,在有微生物降解作用的情況下,將可有效降低場外評估點之風險值。
在不確定分析方面,主要以水力傳導係數(hydraulic conductivity, K值)及污染物濃度值進行分析。在敏感參數相關性方面,對於飲用水攝食途徑致癌風險值而言,以三氯乙烯之敏感度1為最大,呈正向相關性關係,表示當三氯乙烯污染濃度值(致癌)愈高對於飲用水攝食途徑之風險值也就愈高;飲用水攝食途徑非致癌風險值而言,亦是以三氯乙烯之敏感度0.944為最大,呈正向相關性關係。另外,飲用水攝食途徑致癌機率與非致癌統計方面,在累計機率為90%時統計結果,分別為致癌風險值約為6.38×10-5;非致癌風險值約為3.28,因此存在對人體健康之威脅。
綜上所述,本場址健康風險評估結果以地下水傳輸介質的風險最大;暴露途徑則以地下水食入途徑之風險最高。當場址土壤及地下水中有微生物降解作用時,污染物濃度受微生物降解,而有助於下游住宅區的總致癌風險與危害指數降低。健康風險評估模式不但可用來確認場址污染程度與層面、擬定處理建議計畫之依據、後續污染場址利用與管理也可提供管理者及後續整治者評估場址污染嚴重程度及整治急迫性的重要方法。
Risk-based corrective action (RBCA) is rapidly becoming an accepted approach for the remediation of contaminated sites. Under a RBCA approach, the risks to human health and the environment associated with a contaminated site are evaluated and appropriate corrective measures are taken as needed to reduce risk to acceptable levels. A series of standard guides of RBCA have been developed by American Society for Testing and Materials (ASTM). The main task of this study was to conduct a risk assessment at a site contaminated with chlorinated organic compounds. The studied site had a chlorinated organic compound leakage incident, which caused groundwater contamination. The contaminants of concern included trichloroethylene (TCE) and dichloroethylene (DCE). The concentrations of TCE and DCE exceeded the control standards of 0.05 and 0.07 mg/L, respectively. The contamination has a tendency to move downstream along with groundwater. The goals of this study were to: (1) conduct risk assessment at the site, and to evaluate the risk of downstream acceptor; (2) analyze the carcinogenicity risk and the possible pollution transmission pathway to provide the management personnel a basis for future site screening, planning and technical improving; (3) evaluate the effect of natural attenuation (NA) processes on risk reduction; and (4) apply Monte Carlo analysis method to conduct uncertainty analysis at the site. In this study, RBCA Tool Kit for Chemical Release, 1.3 edition established by Groundwater Service, Inc. was applied for risk assessment. Moreover, the health risk assessment stimulation system developed by the Taiwan Environmental Protection Administration was also applied to conduct risk assessment simulation for comparison. The commercial software @RISK and Microsoft’s EXCEL spreadsheet was used to conduct Monte Carlo analysis to analyze risk probability distribution.
Results show that the health risk assessment result has indicated that the main risk at this site was through groundwater exposure pathway. If the biodegradation process occurs, the contaminant plume will be controlled and the risk will be reduced. Thus, the total carcinogenicity risk and hazard index (HI) of the downstream residential area will be reduced to acceptable levels (cancer risk < 1 ×10-5, and HI < 1). Results from the Monte Carlo simulation show that the carcinogenic risk is about 6.38×10-6 when the accumulation rate is 90% via inhalation. The calculated risk levels are higher than the requirement for minimum target risk level (cancer risk of 1x10-6) described in Taiwan’s “Soil and Groundwater Remediation Act”. Results also show that the hazard index of non-carcinogenic risk is about 3.28 via the route of ingestion, which is higher than the acceptable level of 1. Based on the results of risk assessment, it is very important for the decision makers to incorporate remedial activities including institutional controls, engineering controls, and remediation programs from RBCA results. This study provides a streamlined process and guidelines of developing the risk-based decision-making strategy for contaminated sites in Taiwan.
誌謝 I
中文摘要 III
英文摘要 V
目錄 ..VI
表目錄 . IX
圖目錄 . XII
第一章 前言 1-1
1.1研究緣起 1-2
1.2 研究目的 1-3
1.3 研究內容與架構 1-3
第二章 文獻回顧 2-1
2.1含氯有機物之相關特性 2-1
2.1.1含氯有機物特性及來源 2-1
2.1.2對人體及環境之影響 2-5
2.1.3 含氯有機物傳輸途徑 2-8
2.1.4含氯有機物之生物降解 2-12
2.2健康風險評估 2-15
2.2.1 健康風險評估的定義 2-20
2.2.2 國內外風險評估的發展 2-21
2.3不確定性分析 2-28
2.3.1 不確定性的來源 2-28
2.3.2 不確定性的定義 2-28
2.3.3 不確定性分析的種類 2-29
2.4不確定性降低之研究 2-33
2.4.1 蒙地卡羅模擬法的定義 2-33
2.4.2蒙地卡羅模擬法(Monte carlo simulation,MC) 2-34
第三章 研究方法 ..3-1
3.1 土壤及地下水污染之健康風險評估 3-1
3.1.1 危害鑑定(HAZARD IDENTIFICATION): 3-3
3.1.2 劑量反應評估(DOSE-RESPONSE EVALUATION): 3-4
3.1.3 暴露評估(EXPOSURE ASSESSMENT): 3-6
3.1.4 風險度推估(RISK CHARACTERIZATION) 3-8
3.2 場址概念模式建立 3-10
3.3 層次性健康風險評估 3-12
3.3.1 第一層次健康風險評估 3-16
3.3.2 第二層次健康風險評估 3-16
3.3.3 第三層次健康風險評估 3-17
3.4 參數不確定性分析 3-19
3.4.1 蒙地卡羅模擬法原理 3-19
3.4.2 本研究之蒙地卡羅模擬法應用 3-20
第四章 案例探討 4-1
4.1模擬之場址背景資料收集 4-1
4.1.1地下水位及流向 4-1
4.1.2地下水質 4-4
4.1.3地質 4-8
4.1.4氣象概述 4-10
4.2評估模式介紹 4-13
4.2.1 RBCA健康風險評估模式 4-13
4.2.2環保署健康風險評估模擬系統 4-21
4.3場址健康風險評估之模擬 4-25
4.3.1關切物質之判定與評估點選擇 4-27
4.3.2暴露評估 4-32
4.3.3風險特徵描述 4-36
第五章 結果與討論 5-1
5.1 RBCA健康風險評估模式模擬結果 5-1
5.2環保署風險模擬系統與RBCA模式模擬結果評估 5-17
5.2.1環保署風險評估模擬結果 5-17
5.2.2環保署風險評估模式與RBCA模式模擬結果評估 5-33
5.3蒙地卡羅模擬評估結果 5-35
5.3.1台灣石油公司風險評估軟體模擬結果 5-35
第六章 結論 6-1
參考文獻 .參-1
符號說明 .符-1
附錄一 案例參數與出處 附錄1-1
附錄二 關切污染物成份相關參數資料 附錄2-1
附錄三 風險基準篩選水準計算公式 附錄3-1
附錄四 健康風險評估數學模式推導 附錄4-1
附錄五 致癌性與非致癌性計算公式 附錄5-1
American Society for Testing and Material (ASTM), E1739-95(2002) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, 2002.
An, Y.J., Kampbell, D. H., Weaver, J. W., Wilson, J. T., Jeong, S.W., “Natural attenuation of trichloroethene and its degradation products at a lake-shore site”, Environmental Pollution, Vol. 130, Issue 3, pp. 325-335, 2004.
American Society for Testing and Material (ASTM), E2081-00(2004)e1 Standard Guide for Risk-Based Corrective Action, 2004.
A. Steinemann City Planning Program, Georgia Institute of Technology, Atlanta, GA,, Feature article Rethinking human health impact assessment.
Bennett, D.H., James, A.L., McKone, T.E. and Oldenburg, C.M., “ On uncertainty in remediation analysis: variance propagation from subsurface transport to exposure modeling” , Reliability Engineering & System Safety 62 (1-2), 1998.
Benjamin, Jack R. and Cornell, C. Allin. Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill Book Company. USA, 1970.
Bedient, P. B., Rifai, H. S., and Newell, C. J., “Ground water contamination: transport and remediation”, Prentice Hall, Inc., New Jersey, pp.237-477,1994.
California Environmental Protection Agency Office of Environmental
Health Hazard Assessment.
Cullen, A. C., “The sensitivity of probability risk assessment results to alternative model structures: A case study of municipal waste incineration”, Journal of the Air and Waste Management Association, 45, pp.358-546, 1995.
Cullen, A.C., and Frey, H.C., “Probabilistic techniques in exposure assessment”, New York and London , 1999.
Dyer, M., “Field investigation into the biodegration of TCE and BTEX at a formermetal plating works”, Engineering Geology, pp.321-329, 2003.
Dou, W., Omran, K., Grimberg, S. J., Denham, M., Powers, S. E., “Characterization of DNAPL from the U.S. DOE Savannah River Site”, Journal of Contaminant Hydrology, Volume 97, Issues 1-2, pp. 75-86, 2008.
Eidson, Arthur F., Monn, Stephen W., “Application of the American Society for Testing and Materials Risk-Based Corrective Action Approach to a real estate transfer: A case study”, 1997.
Environment Agency R&D Publication, “Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources”, 1999.
Fountain, J. C., “Technology for Dense Nonaqueous Phase Liquid Source Zone Remediation”, Ground Water Remediation Technologies Analysis Center, TE-98-02, 1998.
Fayerweather, W. E., Collins , J. J., A. R. Schnatter, F. T. Hearne, R. A. Menning and D.P. Reyner, “Quantifying Uncertainty in a Risk Assessment Using Human Data, ” Risk Analysis, 19 (6), pp.1077-1090, 1999.
Finkel, A. M., “Confronting Uncertainty in Risk Management-A Guide for Decision-makers,” Washington, DC: Center for Risk Management Resources for the Future, 1990.
Fountain, J.C.,Technologies for dense nonaqueous phase liquid source zone remediation. Ground-Water Remediation Technologies Analysis Center (GWRTAC), TE-98-02, 1998.
Frey, H. C. and J. Zheng, “Probabilistic Analysis of Driving Cycle-Based Highway Vehicle Emission Factors,“ Environmental Science & Technology,36(23), pp.5184-5191, 2002.
Frey, H. C. and Patil, S. R., “Identification and Review of Sensitivity Analysis Methods, “Risk Analysis, 22 (3), 553-578, 2002.
Grathwohl, P., and G. Teutsch In-Situ Remediation of Persistant, 1997.
Organic Contaminants in Groundwater. International Conference on
Groundwater Quality Protection, pp.85-99.
Grindstaff, M. Bioremediation of chlorinated solvent contaminated groundwater. U.S. EPA Technology Innovation Office, 1998.
Guide to Using @RISK,Risk Analysis and Simulation.Add-In for Microsoft® Excel , Version 4.5, 2005
Guyonnet, D., Côme, B., Perrochet, P., and Parriaux, A., “Comparing Two Methods for Addressing Uncertainty in Risk Assessments”, Journal ofEnvironmental Engineering, ASCE, Vol. 125, No. 7, pp.660-666(1999).
Hammonds, J. S., Hoffman, F. O. and Bartell, S. M., An Introductory Guide to Uncertainty Analysis in Environmental and Health Risk Analysis, Oak Ridge National Laboratory, Tennessee, USA, 1994.
Hughes, J.B., Duston, K.L., and Ward, C.H.,”Engineered bioremediation”, Ground-Water Remediation Technologies Analysis Center (GWRTAC), TE-02-03, 2002.
Hughes, J.B., Duston, K.L., and Ward, C.H., “Engineered bioremediation”, Ground-Water Remediation Technologies Analysis Center (GWRTAC), TE-02-03, 2002.
Lo, I. M.-C., Law, W. K.-W., Shen, H. M. “Risk assessment using stochastic modeling of pollutant transport in landfill clay liners“, War. Sci Tech. Vol. 39, No. 10-1 I, pp. 337-341, 1999.
Graham, J. D.,” Historical perspective on risk assessment in the federal government”, Toxicology 102, pp.29-52, 1995.
Johnson, P. C. and Ettinger, R. A., “Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings, “ Environ. Sci. Technol., Vol. 25, No. 8, 1991.
Jerald, L.S.,” Environmental Modeling: Fate and Transport of Pollutantsin Water”, Air and Soil, pp.519,1996.
Kentel, E. and Aral, M.M., “2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment”, Regulatory Toxicology And Pharmacology Assessment, 19 (1), 2005.
Khan, F. I., and Husain, T. “Risk-based monitored natural attenuation —a case study“, Journal of Hazardous Materials, pp.243–272, 2001.
Kennedy, L. G.., Everett, J. W., Gonzales, J., “Assessment of biogeochemical natural attenuation and treatment of chlorinated solvents, Altus Air Force Base, Altus, Oklahoma”, Journal of Contaminant Hydrology, Vol. 83, Issues 3-4, pp. 221-236, 2006.
Lovelace, K. A., “Evaluating the Technical Impracticability of Groundwater Cleanup,” International Conference on Groundwater,
Quality Protection, Taipei, pp. 165-179, 1997.
Linkov, I. and Burmistrov, D., ”Model Uncertainty and Choices Made by Modelers: Lessons Learned from the International Atomic Energy Agency Model Intercomparisons,” Risk Analysis, 23 (6), pp.1297-1308, 2003.
L. James Valverde A., J., H. D. Jacoby and G. M. Kaufmann, “Sequential Climate Decisions under Uncertainty: An Integrated Framework,” Environmental Modeling and Assessment, 4, pp.87-101, 1999.
Moschandreas, D.J. and Karuchit, S., “Scenario-model-parameter:a new method of cumulative risk uncertainty analysis”, Environment International, 28, pp.247-261, 2002.
McKone, Bogen, Hers, I., Zapf-Gilje, R., Kavanaugh, M.C., “Singapore Overview of the management of contaminated sites in the US: the conflict between technology and public policy ENVIRON Corp “, 2004.
Papadopoulos, C. E., and Yeung, H., “Uncertainty Estimation and Monte Carlo Simulation Method”, Flow Measurement and Instrumentation, Vol. 12, pp.291-298, 2001.
Smith, E., “Uncertainty Analysis”, Encyclopedia of Environmetrics, pp.2283-2297, 2002.
Smets, B. F., and Pritchard, P. H., “Elucidating the microbial component of natural attenuation”, Current Opinion in Biotechnology, 14, pp.283-288, 2003.
Tsai, T.T., Kao, C.M., Hong, A., Liang, S.H., Chien, H.Y.,”Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 322, Issues 1-3, pp. 130-137, 2008.
Ünlü, K., “Assessing Risk of Ground-Water Pollution from Land-Disposed Wastes”, Journal of Environmental Engineering, ASCE, Vol. 120, No. 6, pp.1578-1597, 1994.
U.S. EPA, Multimedia, Multipathway, and Multireceptor Risk Assessment Modeling System, Volume 1: Modeling System and Science , 2003.
U.S. EPA,” Soil Screening Guidance: User’s Guide”, 1996.
U.S. EPA, “Risk Assessment Guidance for Superfund”, EPA/9285/6-03, 1991.
U.S. EPA, ”Risk Assessment Guidance for Superfund Sites”, EPA/540/1-89/002, 1989.
U.S. EPA, “Soil Screening Guidance: Technical Background Document Part 2: Development of pathway-specific soil screening levels”, 1996.
U.S. EPA, “Permeable Reactive Subsurface Barriers for Interception and Remediation of Chlorinated Hydrocarbon and Chromium(Ⅵ) Plumes in Ground Water,” National Risk Management Research Laboratory, EPA-600-F-97-008, 1997.
U.S. EPA, “Region 9 Preliminary Remediation Goals (PRGs)”, 1998b.
U.S. EPA ,”Guidelines for Exposure Assessment”, 1992b.
U.S. EPA, “Monitored natural attenuation of petroleum hydrocarbons: U.S. EPA remedial technology fact sheet”, EPA/600/F-98/601, 1999.
U.S. EPA, “Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications”, Office of Solid Waste and Emergency Response, EPA-542-R-00-008, 2000.
US. EPA., “Site Characterization Technologies for DNAPL Investigations”, 2004, EPA 542-R-04-017.
Research and Development, National Center for Environmental Assessment, Washington, DC.
Vogel, T. M. and P. L. McCarty, “Rate of Abiotic Formation of 1,1-Dichloroethylene from 1,1,1-Trichloroethane in Groundwater,”
Journal of Contaminant Hydrology, 1987a.
Vogel, T. M., Criddle, C. S. and McCarty, P. L., “Transformations of Halogenated Aliphatic Compounds,” Environmental Science and Technology, 21(8), pp. 727-736, 1987b.
Venkatram, A., “Inherent Uncertainty in Air Quality Modeling, Atmospheric Environment”, Vol.22, pp.1211-1227, 1988.
Witt, M. E., Klecka, G. M., Lutz, E. J., Ei, T. A., Grosso, N. R., Chapelle, F. H., “Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry”, Journal of Contaminant Hydrology, Vol. 57, Issues 1-2, pp. 61-80, 2002.
Zimmermann, H. J., “An Application-Oriented View of Modeling
Uncertainty,” European Journal of Operational Research, 122, pp. 190-198, 2000.

林建元,山坡地開發災害風險之負擔合理化,都市與計畫,3(20),p279-301,1993。
高志明、陳谷汎、廖毓鈴、陳廷育,DNAPL污染場址之整治技術介紹,工業汙染防治期刊,第56卷,P32-38,2001。
洪轟誌,非點源污染模式參數不確定性分析,國立交通大學環境工程研究所,碩士論文,1994。
吳鴻明,似Fenton法現地氧化TCE DNAPL之探討,國立屏東科技大學環境工程與科學系,碩士論文,2001。
張莉茹,“以自然衰減整治受石油碳氫化合物污染之地下水“國立中山大學環境工程研究所,碩士論文,2004。
饒瑞萍,“污染場址健康風險評估參數之敏感性分析“ 國立中山大學環境工程研究所,碩士論文,2005。
陳呈芳,“自然衰減法於土壤及地下水污染整治之應用“中興工程顧問股份有限公司,環保技術e報,第40期,2006。
葉聰翰, “水產品中有機錫之分析及風險評估”,國立中山大學海洋資源研究所,碩士論文,2002。
蔡文田,秋申彥,”蒸氣脫脂用含氯溶劑之特性管制和污染預防”工氣污染防治,n 41. pp. 145-160,1992。
張雍敏,”汽油及其組成物對健康之影響.” 勞工安全衛生簡訊第32 期,1998。
張魯均,沈億瑛,何秉宜,污染物水文地質學原理等,第二版,茂昌圖書有限公司,1999。
李美慧,常見環境荷爾蒙物質及其影響。環境荷爾蒙研討會論文集,pp.4-14,台北,2000。
鄭凱駿, “致癌性金屬土壤污染管制標準之適用性評估“ 嘉南藥理科技大學環境工程與科學系碩士論文,2005。
趙雅鈴, “加油站作業人員暴露於危害性有機物質之健康風險評估研究“ 中國文化大學勞工研究所,2003。
盧至人,含氯溶劑污染的現地生物復育技術,環保月刊,3月號,第九期, PP.79-86,2002。
車明道,DNAPL調查技術簡介,台灣土壤及地下水環境保護協會,第四期,PP.19-26,2002。
李在平、陳鴻泉、林輝山、朱家毅、林耿億、賈儀平,“自然衰減應用於石油碳氫化合物污染整治之探討“台灣土壤及地下水環境保護協會簡訊,第17期, pp.3-8,2005 。
周奮興、郭怡婷 、高平洲、張至上,“DNAPL污染場址調查程序與整治方法評估“峰將工程顧問股份有限公司,2005。
洪旭文,“歐洲土壤與地下水污染整治計畫介紹“,成功大學環境工程系台灣土壤及地下水環境保護協會簡訊,第10期,pp.12-14,2003。
林進財,“以健康風險評估訂定由污染場址之整治目標”,國立中山大學環境工程研究所,碩士論文,2001。
行政院環境保護署,有害空氣污染物排放調查及管制規範研訂計畫,1996。
陳慎德、陳莉容,以風險評估計算整治目標之案例介紹,環保月刊3月號第9期,p117~125,2002。
RCA 桃園場址未來地下水污染整治與管理工作計畫書,瑞昶科技股份有限公司,2004。
高志明,健康風險評估在污染場址整治之應用,中山大學環境工程研究所,2006。
土壤及地下水污染整治網(2004)http://ww2.epa.gov.tw/SoilGW/index.asp.
黃文彥、盧哲明、劉博文,應用健康風險評估模式探討土壤/地下水污染之暴露風險問題,工業污染防治第73期,p129~144,2000。
陳宜清、陳俊宏,探討於生態風險評估之不確定性,大葉大學環境工程學系,科學與工程技術期刊第2卷第1期,p49~60,2006。
周瑋陞,自來水水質分析調查及總三鹵甲烷之風險評估-以高雄市為例,中山大學環境工程研究所,碩士論文,2006。
陳彥全,健康風險評估中不確定性之量化與降低,台灣大學環境工程學研究所,博士論文,2007。
陳怡君,國際環保趨勢-歐盟執行污染場址風險評估,工研院能環所,2004。
陳宜清、張慶正,建立台灣海岸溢油污染及清理之生態風險評估準則-應用於珊瑚礁及海岸濕地生態系,行政院國家科學委員會專題研究計畫成果報告(NSC91-2313-B-212-006),2003。
郭振泰,水壩安全檢查最佳次序及週期之建立,台灣大學水工試驗所,經濟部水資源局委託研究計畫成果報告,2002。
陳俊宏,建立生態風險評估模式之不確定性分析基本架構,大葉大學環境工程研究所,碩士論文,2005。
黃國威,地下水污染風險評估之不確定性,國立台灣大學環境工程學研究所,碩士論文,2003。
許惠悰,風險評估與風險管理,新文京開發出版股份有限公司,2003。
藍森崇,土壤及地下水污染風險評估技術,財團法人中技社環境技術發展中心。
王奕森、劉敏信, 整治目標與風險評估探討,台灣土壤及地下水環境保護協會簡訊第2期,森康工程顧問股份有限公司 ,2001。
黃子玲,“風險評估中環境參數解析度之研究-以醫療廢棄物焚化爐為例”,國立臺灣大學環境工程學研究所,碩士論文,2004。
羅時麒,“以系統性機率模式鑑定、量化與整合生命週期評估之不確定性”,國立臺灣大學環境工程學研究所,博士論文,2005。
鄭凱駿,“致癌性重金屬土壤污染管制標準之適用性探討”,嘉南藥理科技大學環境工程學系,碩士論文,2005。
盧至人、邱應志、胡慶祥,「DNAPLs 污染物之現地整治技術:厭氧還原脫氯實驗結果與工程應用」,第八屆土壤及地下水污染整治研討會論文集,第91-125頁,2003。
盧元清, “降雨因子對掩埋場滲出水之不確定性分析“朝陽科技大學環境工程與管理系,碩士論文,2003。
行政院環境保護署,土壤及地下水污染場址健康風險評估評析原則,2006。
行政院勞工安全委員會勞工安全研究所物質安料表。
吳俊宏,“三氯乙烯和四氯乙烯對肺泡巨噬細胞之作用“,慈濟大學生命科學院毒理學研究所,碩士論文,2001。
行政院環保署毒化物災害防救管理(http://www.epa.gov.tw/J/toxic/index.html)
高志明,整治牆及自然衰減技術介紹,國立中山大學環境工程研究所,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔