跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/16 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高孟琳
研究生(外文):KAO,MENG-LIN
論文名稱:多目標投資組合分析與微粒群最佳化
論文名稱(外文):Multi-objective Portfolio Analysis and Particle Swarm Optimization
指導教授:鄒慶士鄒慶士引用關係許晉雄許晉雄引用關係
學位類別:碩士
校院名稱:國立臺北商業技術學院
系所名稱:商學研究所
學門:商業及管理學門
學類:一般商業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:128
中文關鍵詞:投資組合多目標最佳化背包型多目標微粒群最佳化
相關次數:
  • 被引用被引用:4
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:1
如何將有限的資金在眾多之投資標的中作有效的配置,是財務管理領域中重
要的議題之一,稱為投資組合選擇,屬於一個多目標最佳化的問題。在過去大部分研究中,處理投資組合選擇問題大多是將具有衝突性的目標合併轉為單一目標的形式,並以單目標最佳化技術進行求解,但所得到的解未必是令人滿意的,因為並不能保證得到的解為非凌越解,特別當投資組合最佳化模型中包含一些實務上所需的限制條件,例如:基數限制,故本研究以啟發式多目標微粒群最佳化技術為基礎,運用背包型多目標微粒群最佳化演算法,針對投資組合問題進行求解,可在賣空和基數限制的條件下獲得效率之投資組合。其研究結果發現背包型多目標微粒群最佳化求得的非凌越解,在不被參考集凌越比例之績效衡量指標上顯示不易被LINGO求得之非凌越解所凌越。最後,針對投資組合選擇問題應用多屬性決策分析中的TOPSIS和簡單加權法兩種方法,對投資組合進行分析排序,提供投資者更多樣化之投資組合選擇,由研究結果可發現投資者在選擇其投資組合時,應考慮更多全面性的績效指標。
The allocation of limited capital to a variety of assets available is one of the important problems in financial management. It is actually a constrained multi-objective optimization problem called portfolio selection. Most studies have been made to solve the problem with single-objective optimization techniques by aggregating conflicting and incommensurate objectives into a single one. The solutions obtained may be unsatisfactory because their non-dominance is not guaranteed, especially when some practical constraints, such as cardinality constraints,
are incorporated into the portfolio optimization models. This paper presents an evolutionary multi-objective optimization technique, which called Knapsack
Multi-Objective Particle Swarm Optimization (K-MOPSO) to generate the efficient portfolios in terms of expected return and variance under short sales and/or cardinality
constraints. Computational results show that K-MOPSO is competitive with traditional approaches implemented by LINGO. Finally, a Multi-Attribute Decision Making (MADM) method named Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) is employed to outrank the efficient portfolio that decision makers satisfy most.
中文摘要…………………………………………………………… i
ABSTRACT ………………………………………………………… ii
誌 謝 …………………………………………………………… iii
目 錄 ……………………………………………………………………… iv
表目錄 ……………………………………………………………………… vii
圖目錄 ……………………………………………………………………… ix
第一章 緒論………………………………………………………………………1
1.1 研究背景與動機 ……………………………………………………………1
1.2 研究目的………………………………………………………………… 3
1.3 研究架構與流程…………………………………………………………… 3
1.4 研究限制 ………………………………………………………………… 4
第二章 文獻探討 ………………………………………………………………5
2.1 投資組合理論…………………………………………………………… 5
2.2 多目標最佳化 ……………………………………………………………12
2.2.1 柏拉圖最佳解集合………………………………………………………12
2.2.2 傳統多目標最佳化求解方式……………………………………………14
2.3.1 微粒群最佳化演算法的發展背景與基本概念…………………………16
2.3.2 微粒群演算法說明………………………………………………………17
2.3.3 微粒群演算法相關發展應用……………………………………………20
2.4 多屬性決策 ……………………………………………………………… 22
2.5.1 簡單加權法………………………………………………………………24
2.5.2 TOPSIS 方法……………………………………………………………26
第三章 多目標投資組合與微粒群最佳化………………………………………28
3.1 有偏好之投資組合模型……………………………………………………29
3.2 無偏好之多目標投資組合模型……………………………………………30
3.3 以LINGO軟體求解有偏好之投資組合模型………………………………32
3.3.1 LINGO軟體概述 ………………………………………………………32
3.3.2 LINGO模型的基本組成…………………………………………………33
3.4 K-MOPSO求解無偏好之多目標投資組合模型 ………………………… 34
3.4.1 K-MOPSO執行步驟 …………………………………………………35
3.4.2 K-MOPSO之系統建置…………………………………………………37
3.5 非凌越解績效評估……………………………………………………… 39
3.6 投資人偏好與投資組合………………………………………………… 40
3.6.1 簡單加權法……………………………………………………………40
3.6.2 TOPSIS法…………………………………………………………… 41
第四章 投資組合之實例驗證…………………………………………………42
4.1樣本資料……………………………………………………………………43
4.2 不允許賣空條件 …………………………………………………………45
4.2.1 無基數限制……………………………………………………………46
4.2.1.1 LINGO求解投資組合之結果……………………………………… 46
4.2.1.2 K-MOPSO求解投資組合之結果…………………………………… 52
4.2.1.3非凌越解績效評估………………………………………………… 55
4.2.2 基數限制………………………………………………………………61
4.2.2.1 LINGO求解投資組合之結果………………………………………61
4.2.2.2 K-MOPSO求解投資組合之結果……………………………………66
4.2.2.3非凌越解績效評估………………………………………………… 72
4.3 允許賣空條件……………………………………………………………81
4.3.1 無基數限制……………………………………………………………82
4.3.1.1 LINGO求解投資組合之結果………………………………………82
4.3.1.2 K-MOPSO求解投資組合之結果……………………………………83
4.3.1.3 非凌越解績效評估…………………………………………………85
4.3.2 基數限制………………………………………………………………88
4.3.2.1 LINGO求解投資組合之結果…………………………………… 88
4.3.2.2 K-MOPSO求解投資組合之結果……………………………………89
4.3.2.3 非凌越解績效評估…………………………………………………91
4.4 多屬性決策分析………………………………………………………97
4.4.1 簡單加權法求解投資組合……………………………………………98
4.4.2 TOPSIS求解投資組合………………………………………………100
第五章 研究結論與建議……………………………………………………106
5.1 研究結論 ……………………………………………………………106
5.2 未來研究建議……………………………………………………………108
參考文獻…………………………………………………………………………110
附 錄 一 ……………………………………………………………………115
中文部分
[1]田哲溢,粒子群最佳化在個人資產配置之模型建構研究-以財富管理為例,碩士論文,元智大學資訊管理研究所,桃園,2006。
[2]朱奉云、邱菀紫,企業投資組合管理不確定型決策方法,濟南大學學報,第四卷增刊,2001,第40-43頁。
[3]吳琴偉、馮玉明,中外資產管理業務的比較與啟示,證券市場導報,08期,2004。
[4]吳詩敏,組合編碼遺傳演算法於投資策略資金分配之應用,碩士論文,國立中央大學資訊管理研究所,桃園,2005。
[5]姜林杰祐、高崇勛,「以基因演算法求解考慮交易限制之投資組合最佳化模型」,2005,第三屆演化式計算應用研討會暨2005機會探索國際工作坊。
[6]許志義,多目標決策,臺北市:五南書局,二版,2003。
[7]張良勝,國稅查核品質之研究— TOPSIS 方案之運用,碩士論文,朝陽科技大學財務金融研究所,台中,2002。
[8]陳曉琪,供應商遴選之決策支援系統之研究,碩士論文,義守大學工業工程
與管理研究所,高雄,2001。
[9]陳信宏,投資組合決策最佳化與績效指標之研究,碩士論文,國立中山大學,企業管理學系研究所,高雄,2003。
[10]張宮熊,投資組合分析與管理,臺北市,華泰出版社,初版,2001。
[11]顏肇鴻,使用智慧型多目標演算法設計最佳的K-NNR分類器,碩士論文,私立逢甲大學資訊工程研究所,台中,2003。
[12]顏志杰,遺傳演算法在股票投資組合風險值模型建構之應用-以臺灣50指數成份股票為例,碩士論文,輔仁大學資訊管理研究所,台北,2005。
[13]鄧美華,餐廳區位選擇之多評準決策—以寶山日本四季懷石料理餐廳為例,碩士論文,文化大學觀光事業研究所,台北,1995。
[14]謝劍平,財務管理新觀念與本土化,臺北市:智勝出版社,三版,2005 。
[15]謝金星、薛毅,優化建模與LINDO/LINGO軟件,中國北京,清華大學出版社,三版,2007。

英文部分
[16]Bergh, F. and Ngelbrecht, A. P. E., “A New Locally Convergent Particle Swarm Optimiser”, The Proceedings of IEEE International Conference on Systems, Man and Cybernetics, In Hammamet, Tunisia, vol. 3, 2003.
[17]Buede, D. M and D. T. Maxwell, “Rank Disagreement: A Comparison of Multi-Criteria Methodologies.” , Journal of Multi-Criteria Decision Analysis, vol. 4, no.1, 1995 , pp.1-21.
[18]Chang ,T. J., Meade . N ., Beasley . J .E., and Sharaiha ,Y.M., “Heuristics For Cardinality Constrained Portfolio Optimisation”, Computers & Operations Research, vol.27, no. 13, 2000 , pp.1271-1302.
[19]Churchman, C. W. and Ackoff, R. L., “An Approximate Measure of Value’’, Journal of the Operations Research Society of America, vol. 2, no. 2, 1954 , pp.172-187.
[20]Charnes, A. and Cooper, W. W., “Management Models and Industrial
Applications of Linear Programming”, Management Science, vol. 4, no. 1, 1957
pp.38.
[21]Cohon, J. L., Multicriteria Programming: Brief Review and Application. In J. S. Gero(Ed.), Design Optimization, New York: Academic Press, 1985.
[22]Clark, J. J., Hindelang ,T. J., and Pritchard, R. E., Capital Budgeting :Planning and Control of Capital Expenditures, Prentice-Hall, Inc., New Jersey ,1979
[23]Clerc, M., “The Swarm and the Queen: Towards a Deterministic and Adaptiveparticle Swarm Optimization”, Proceeding of the 1999 Congress on Evolutionary Computation, Washington, 1999, pp. 1951-1957.
[24]Coello, C. A., and Lechuga, M. S., “MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization”, Proceeding of the 2002 Congress on Evolutionary Computation, Honolulu, Hawaii USA, May, 2002, pp.12-17.
[25]Deng H , Yeh CH , Chang YH, “Fuzzy multicriteria analysis for performance evaluation of bus companies. ”, European Journal of Operational Research, vol.126, no.3, 2000, pp.459–473.
[26]Duan ,Y. ,“A Multi-objective Approach to Portfolio Optimization”, Rose-Hulman Undergraduate Math Journal, vol. 8, no. 1, 2007。
[27]Ehrgott M. , Klamroth K and Schwehm C. , “An MCDM Approach to Portfolio Optimization” , vol. 155, no. 3 , 2004 , pp. 752-770
[28]Edwards, W., Conflicting Objectives in Decision, Wiley, New York,
1977.
[29]Elton, E.J. and Gruber, M.J., Modern Portfolio Theory and Investment Analysis. Wiley, 1995.
[30]Elton, E.J., Gruber, M.J., Brown, S.J., and Goetzmann. W., Modern Portfolio
Theory and Investment Analysis. John Wiley, New York, 6th edition, 2002.
[31]Feng Cheng-Min and Wang Rong-Tsu , “Performance Evaluation for
Airlines Including the Consideration of Financial Ratios,” Jounal of Air Transport Management, vol. 6 , 2000, pp.133-142.
[32]Fishburn, P. C., “Utility Independence on Subsets of Product Sets”, Operations Research, vol. 24, no. 2, 1976, pp.245-255.
[33]Farmer, T. A., “Testing the Robustness of Multiattribute Utility Theory in An Applied Setting”, Decision Sciences, vol. 18, no. 2, 1987, pp.178-193.

[34]Giacomo, Tollo., Andrea, R., “Metaheuristics for the Portfolio Selection Problem ”, International Journal of Operations Research , vol. 5, no. 1, 2008, pp.13-35.
[35]Hwang, C. L. and Masud, A. S. M., Multiple Objective Decision Making-Methods and Appliations: A State-of-the-Art Survey., Berlin: Springer-Verlag, 1979.
[36]Hwang, C. L., K. Yoon, Multiple Attribute Decision Making: Methods and. Applications, Springer, Berlin., 1981.
[37]Hu, X., Eberhart, R. C., “Multi-objective optimization using dynamic neighborhood particle swarm optimization”, Proceeding of the 2002 Congress on Evolutionary Computation, Honolulu, Hawaii USA, May, 2002, pp.12-17,
[38]Klee, A. J. , “ The Role of Decision Models in the Evaluation of Competing Environmental Heath Alternatives,"Management Science, vol. 18, vo. 2, 1971 , pp. B52-B67.
[39]Kennedy, J., Eberhart, R. C., Shi, Y., Swarm Intelligence, San Francisco: Morgan Kaufmann, 2001.
[40]Kennedy, J. and Spears, W., “Matching Algorithms to Problems: An Experimental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator”, In IEEE World Congress on Computational Intelligence, 1998, pp. 74–77.
[41]Kendall, G., Su, Y., Particle Swarm Optimisation Approach in the Construction of Optimal Risky Portfolios, Proceedings of the 23rd IASTED International Multi-Conference Artificial Intelligence and Applications Innsbruck, 2005.
[42]Lintner, J. ,“The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets”, The Review of Economics and Statistics, vol. 47, no. 1 (February), 1965 , pp.13-37.
[43]Makoto Koshino, Hiroaki Murata, and Haruhiko Kimura, “Improved Particle Swarm Optimization and Application to Portfolio Selection”, Electronics and Communications in Japan, part 3, vol. 90, no. 3, 2007, pp. 13 – 25.
[44]Markowitz H. Portfolio Selection, Journal of Finance, vol.7, no.1, 1952 , pp77-91. Mostaghim, S. and Teich, J. “Covering Pareto-optimal Fronts by Subswarms in Multi-objective Particle Swarm Optimization”. Proceeding of the 2004 Congress on Evolutionary Computation, Portland, Oregon, USA, June, 2004, pp.19-23.
[45]Mostaghim, S. and Teich, J. “Covering Pareto-optimal Fronts by Subswarms in Multi-objective Particle Swarm Optimization”. Proceeding of the 2004 Congress on Evolutionary Computation, Portland, Oregon, USA, June, 2004, pp.19-23.
[46]Nemhauser, G. L., and Ullmann, Z.,“Discrete Dynamic Programming and Capital Allocation.”Management Science ,vol.15 , 1969 , pp.494-505.
[47]Okabe, T., Jin, Y. and Sendhoff, B , “A Critical Survey of Performance Indices for Multi-objective Optimization”, Proc. of 2003 Congress on Evolutionary Computation , 2003 , pp. 878-885.
[48]Reynolds, C. W., “A Distributed Behavioral Model”, Computer Graphics, vol. 21, no. 4, 1987, pp. 24-34.
[49]Salerno, J., “Using the Particle Swarm Optimization Technique to Train A Recurrent Neural Model”, In Proceedings of the Ninth IEEE International Conference on Tools with Artificial Intelligence, 1997, pp. 45-49.
[50]Schrage , L., “Optimization Modeling with LINGO. ”, Lindo Publishing ,
Chicago, 2003.
[51]Shi, Y. and R. C. Eberhart , “A Modified Particle Swarm Optimizer”, Proceedings of IEEE International Conference of Evolutionary Computation”, Anchorage, Alaska, 1998 , pp.69-73.
[52]Shi, Y. H., and Eberhart, R. C., “Empirical Study of Particle Swarm Optimization”, Proceedings of the Evolutionary Computation 1999 Congress, vol. 3, 1999, pp. 1945-1950.
[53]Subbu .R , Bonissone. P , Eklund .N , Bollapragada. S , and Chalermkraivuth. K, “Multiobjective financial portfolio design: A hybrid evolutionary approach”. In IEEE Congress on Evolutionary Computation (CEC 2005), 2005.
[54]Streichert , F., Ulmer , H., Zell , A., “ Evolutionary Algorithms and the Cardinality Constrained Portfolio Optimization Problem” , Center for Bioinformatics Tubingen (ZBIT), University of Tubingen , 2003.
[55]Veldhuizen, D. A. V. and Lamont, G. B., “Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-art”. Evolutionary Computation, vol. 8, no. 2, 2000, pp.125-147.
[56]Xiao-Tie Deng , Shou-Yang Wang , and Yu-Sen Xia , “Criteria, Models and Strategies in Portfolio Selection ”, Advanced Modeling and optimization, vol. 2 , no. 2 , 2000 , pp.79-101.
[57]Yoon, K. P. and Hwang, C. L. , “ Multiple Attribute Decision Making an Introduction ” , Sage Publications, 1995 .
[58]Zhenya, H., Chengjian, W., Luxi, Y., Xiqi, G., Susu, Y. R., Eberhart, C. and Shi, Y., “Extracting Rules from Fuzzy Neural Networks by Particle Swarm Optimization”, IEEE International I Conference on Evolutionary Computation, Anchorage, Alaska , 1998 , pp. 74-77.
[59]Zeleny, M., “A Concept of Compromise Solutions and the Method of the Displaced Ideal ”, Computers & Operations Research, vol. 1, 1974 ,
pp.479-496.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊