(34.204.185.54) 您好!臺灣時間:2021/04/11 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:殷宗豪
研究生(外文):YIN TSUNG HAO
論文名稱:二氟化硼光電子光譜與分解途徑的理論研究
論文名稱(外文):Theoretical research on the photoelectron spectroscopy and dissociation pathways of difluoroborane
指導教授:張嘉麟張嘉麟引用關係
學位類別:碩士
校院名稱:國立臺中教育大學
系所名稱:科學應用與推廣學系科學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:117
中文關鍵詞:密度泛函理論法蘭克­康登因子光電子光譜分解途徑游離能二氟化硼
外文關鍵詞:density functional theoryFrank-Condon factorsphotoelectron spectradissociation pathwaysionization energydifluoroborane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是利用密度泛函理論的方法,研究二氟化硼分子及其分解產物的結構、光電子光譜和分解途徑。我們用B3LYP泛函數,以6-311+G(d,p)、6-311++G(d,p)、6-311++G(2d,p)、6-311++G(2d,2p) 、cc-pVDZ、cc-pVTZ、aug-cc-pVDZ、aug-cc-pVTZ八個基組,計算出二氟化硼分子、離子及其分解產物的平衡結構和振動頻率,也計算法蘭克­康登因子,並模擬其光電子光譜。結果發現HBF2和BF分子模擬光譜圖與實驗一致;而HF和F2分子模擬光譜與實驗有差異,需進一步研究。接著以CCSD和CCSD(T)方法,計算二氟化硼分子、離子及其分解產物的能量,結果發現計算出的游離能,除F2分子以外,其餘與實驗結果誤差在0.5 eV以內,且以高基組6-311++G(2d,2p) 的計算結果誤差最小。最後,我們分析了二氟化硼分子、離子及其分解產物可能的分解途徑,以及所需的能量。
The purpose of this research is to study the structures, photoelectron spectra, and dissociation pathways of difluoroborane and its fragments by using the density functional theory. The equilibrium structures and harmonic vibrational frequencies of the target molecules have been calculated by using the B3LYP functional and the basis sets of 6-311+G(d,p), 6-311++G(d,p), 6-311++G(2d,p), 6-311++G(2d,2p), cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ. We have also calculated the Frank-Condon factors from which the photoelectron spectra were simulated. While the simulated photoelectron spectra of HBF2 and BF are in agreement with the experiment, those of HF and F2 are unsatisfactory and deserve further investigation. Then, we calculated the energies of difluoroborane and its fragments by using the CCSD and CCSD(T) methods. The errors for the calculated ionization energies are within 0.5 eV, except for F2, with the 6-311++G(2d,2p) basis set most accurate. Finally, we analyzed the possible dissociation pathways and required energies for difluoroborane and its fragments.
第一章 緒論..................................1
1.1 研究動機與重要性........................1
1.2 文獻探討...............................3
1.3 論文架構...............................5
第二章 研究方法...............................6
2.1 Hartree-Fock理論簡介...................6
2.2 密度泛函理論............................7
2.2.1 Hohenberg-Khon理論..................8
2.2.2 Khon-Sham方法......................10
2.2.3 泛函數.............................14
2.2.4 基底函數組..........................15
2.2.5 耦合簇.............................18
2.3 二氟化硼分子與分解產物的計算.............20
2.4 法蘭克-康登因子........................21
2.5 光譜模擬...............................23
第三章 結果與討論.............................25
3.1 二氟化硼分子與分解產物的計算.............25
3.1.1 平衡結構............................25
3.1.2 振動頻率............................26
3.1.3 轉動常數............................30
3.2 法蘭克-康登因子........................31
3.3 模擬光譜與實驗光譜......................34
3.4 二氟化硼分子與分解產物游離能及其分解途徑...35
第四章 結論..................................38
參考文獻.....................................40
附 錄.......................................48
1. M. W. Chase, J. Phys. Chem. Ref. Data. Monograph 9, 1 (1998).
2. R. D. Srivastava, O. M. Uy, and M. Farber, J. Chem. Soc. Faraday
Trans. 1 70, 1033 (1974).
3. W. G. George and M. K. Stephen, J. Mater. Chem. 9, 2037 (1999).
4. L. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1920).
5. J. Franck, Trans. Faraday Soc. 21, 536 (1926).
6. E. Condon, Phys. Rev. 27, 640 (1926).
7. E. Condon, Phys. Rev. 28, 1182 (1926).
8. E. Condon, Phys. Rev. 32, 858 (1928).
9. E. K. U. Gross and R. M. Dreizler, Density Functional Theory (Plenum, New York,
1993).
10.蘇世剛 和 牟中原, Chemistry (The Chin. Chem. Soc., Taiwan) 47, 308 (1989).
11. J. -L. Chang and Y. -T. Chen, J. Chem. Phys. 116, 7518 (2002).
12. S.-G. He, F. X. Sunahori, and D. J. Clouthier, J. Am. Chem. Soc. 127, 10814 (2005).
13. G. H. Cady and J. H. Hildebrand, J. Am. Chem. Soc. 52, 3839 (1930).
14. G. C. Straty and R. Prydz, Adv. Cryog. Eng. 15, 36 (1970).
15. D. R. Stull, Ind. Eng. Chem. 39, 517 (1947).
16. J. D.Cox, D. D. Wagman, and V.A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere Publishing Corp., New York, 1984).
17. A. G. Streng, J. Chem. Eng. Data 16, 357 (1971).
18. I. Sheft, A. J. Perkins, and H. H. Hyman, J. Inorg. Nucl. Chem. 35, 3677 (1973).
19. L. Lynds, J. Chem. Phys. 42, 1124 (1965).
20. R. F. Proter and S. K. Wason, J. Phys. Chem. 69, 2208 (1965).
21. M. Perec and L. N. Becka, J. Chem. Phys. 43, 721 (1965).
22. L. Lynds and C. D. Bass, J. Chem. Phys. 43, 4357 (1965).
23. D. R. Herschbach and V. W. Laurie, J. Chem. Phys. 40, 3124 (1964).
24. K. Venkateswarlu and M. K. R. Warrier, Ind. J. Pure Appl. Phys. 9, 233 (1971).
25. T. Kasuya, W. J. Lafferty, and D. R. Lide, J. Chem. Phys. 48, 1 (1968).
26. A. G. Robiette and M. C. L. Gerry, J. Mol. Spectrosc. 80, 403 (1980).
27. J. M. Dyke, L. Golob, N. Jonathan, A. Morris, and M. Okuda, J. Chem. Soc. Faraday Trans. 1, 70, 1828 (1974).
28. J. K. G. Watson, J. Chem. Phys. 45, 1360 (1966).
29. D. B. Atkinson, K. K. Irikura, and J. W. Hudgens, J. Phys. Chem. 101, 2045 (1997).
30. D. A. Brotchie and C. Thomson, Chem. Phys. Lett. 22, 338 (1973).
31. M. Peric and S. D. Peyerimhoff, Mol. Phys. 78, 877 (1993).
32. P. Botschwina, J. Mol. Spectrosc. 118, 76 (1986).
33. J. Berkowitz, Chem. Phys. Lett. 11, 21 (1971).
34. E. A. Colbourn, M. Dagenais, A. E. Douglas, and J. W. Raymonda, Can. J. Phys. 54, 1343 (1976).
35. G. Cazzoli, C. Degil. Esposti, L. Dore and P. G. Favero, J. Mol. Spectrosc. 121, 278 (1987).
36. J. M. Dyke, C. Kirby, and A. Morris, J. Chem. Soc. Faraday Trans. 2, 79, 483 (1983).
37. H. V. Lonkhuyzan and C. A. De. Lange, Chem. Phys. 89, 313 (1984).
38. A. E. Shirk and J. S. Shike, Inorg. Chem. 22, 72 (1983).
39. T. D. Coyle, J. J. Ritter, and T. C. Farrar, Proc. Chem. Soc. 25, 105(1964).
40. P. Hassanzadeh and L. Andrews, J. Phys. Chem. 97, 4910 (1993).
41. M. E. Jacox and W. E.Thompson, J. Chem. Phys. 102, 4747 (1995).
42. K. Kawaguchi and E. Hirota, Chem. Phys. Lett. 123, 1 (1986).
43. M. Peric and S. D. Peyerimhoff, Mol. Phys. 78, 877 (1993).
44. J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
45. K. Kawaguchi, J. E. Butler, C. Yamada, H. Kanamori., T. Minowa, S. H. Bauer, and E. Hirota, Annual Symposium of Chemical Society of Japan, Tokyo (1984) 1A16.
46. T. E. H. Walker, P. M. Dehmer, and J. Berkowitz, J. Chem. Phys. 59, 4292 (1973).
47. N. P. C. Westwood, W. Lewis-Bevan, and M. C. L. Gerry, J. Mol. Spectrosc. 106, 227 (1984).
48. A. G. Robiette and M. C. L. Gerry, J. Mol. Spectrosc. 80, 403 (1981).
49. http://webbook.nist.gov (2000).
50. D. P. Chong, C. Kirby, W. M. Lau, T. Minato, and N. P. C. Westwood, Chem. Phys. 59, 75 (1981).
51. M. Farber and R. D. Srivastava, J. Chem. Phys. 81, 1 (1984).
52. P. –M. Guyon, J. Chem. Phys. 65, 5 (1976).
53. G. Bieri and A. Schmelzer, Chem. Phys. 49, 213 (1980).
54. S. Banna and D. A. Shirley, J. Chem. Phys. 63, 11 (1975).
55. C. R. Brundle, Chem. Phys. Lett. 7, 317 (1970).
56. P. D. Thomas and J. W. Rabalais, J. Chem. Phys. 63, 11 (1975).
57. S.-G. He, F. X. Sunahori, and D. J. Clouthier, J. Am. Chem. Soc. 97, 487 (1975).
58. Darwin and Charles, Biographical Memoirs of Fellows of the Royal Society, (Royal Society, London, 1958).
59. M. Born and J. R. Oppenheimer, Ann. Physik. 84, 457 (1927).
60. E. Schrödinger, Ann. Phys. 489, 79 (1926).
61. E. Schrödinger, Phys. Rev. 28, 1049 (1926).
62. D. R. Salahub and M. C. Zerner, The Challenge of d and f Electrons (ACS, Washington, D.C., 1989).
63. R. G. Parr and W. Yang, Density-functional theory of atoms and molecule (Oxford Univ., Oxford, 1989).
64. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
65. J. K. Labanowski and J. W. Andzelm, Density Functional Methods in Chemistry (Springer-Verlag, New York, 1991).
66. C. Sosa and C. Lee, J. Chem. Phys. 98, 8004 (1993).
67. J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992).
68. G. E. Scuseria, J. Chem. Phys. 97, 7528 (1992).
69. P. M. W. Gill, B. G. Johnson, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 197, 499 (1992).
70. P. J. Stephens, F. J. Devlin, C. S. Ashvar, C. F. Chabalowski, and M. J. Frisch, Faraday Discuss 99, 103 (1994).
71. P. J. Stephens, F. J. Devlin, M. J. Frisch, and C. F. Chabalowski, J. Phys. Chem. 98, 11623 (1994).
72. A. Ricca and C. W. Bauschlicher, J. Phys. Chem. 99, 9003 (1995).
73. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
74. K. Burke, J. Werschnik, and E. K. U. Gross, J. Chem. Phys. 123, 062206 (2005).
75. R. Dreizler and E. Gross, Density Functional Theory (Plenum , New York, 1995).
76. W. Koch and M. C. Holthausen, A Chemist's Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2002).
77. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University, New York, 1989).
78. B. G. Johnson and M. J. Frisch, J. Chem. Phys. 100, 7429 (1994).
79. B. G. Johnson and M. J. Frisch, Chem. Phys. Lett. 216, 133 (1993).
80. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964).
81. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
82. A. D. Becke, J. Chem. Phys. 97, 9173 (1992).
83. A. D. Becke, J. Chem. Phys. 96, 2155 (1992).
84. S. M. Blinder, Amer. J. Phys. 33, 431 (1965).
85. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
86 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
87. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).
88. T. C. Farrar and T. D. Coyle, J. Chem. Phys. 41, 2612 (1964).
89. A. D. Becke, Phys. Rev. A 38, 3098 (1988).
90. P. Hohenberg and W. Kohn, Phys. Rev. A 136, B864 (1964).
91. W. Kohn and L. J. Sham, Phys. Rev. A 140, A1133 (1965).
92. J. C. Slater, Quantum Theory of Molecular and Solids (McGraw-Hill, New York, 1974).
93. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
94. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).
95. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).
96. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).
97. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).
98. K. Raghavachari and G. W. Trucks, J. Chem. Phys. 91, 1062 (1989).
99. R. C. Binning and L. A. Curtiss, J. Comput. Chem. 11, 1206 (1990).
100. M. P. McGrath and L. Radom, J. Chem. Phys., 94, 511 (1991).
101. L. A. Curtiss, M. P. McGrath, J-P. Blaudeau, N. E. Davis, R. C. Binning, Jr., and L. Radom, J. Chem. Phys. 103, 6104 (1995).
102. R. Krishnan, J.S. Binkley, R. Seeger, and J.A. Pople, J. Chem. Phys. 72, 650 (1980).
103. T. Clark, J. Chandrasekhar, and P. V. R. Schleyer, J. Comp. Chem. 4, 294 (1983).
104. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).
105. J-P. Blaudeau, M. P. McGrath, L.A. Curtiss, and L. Radom, J. Chem. Phys. 107, 5016 (1997).
106. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
107. D. E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
108. D. E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 101, 975 (1995).
109. D. E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 98, 1358 (1993).
110. J. Koput and K.A. Peterson, J. Phys. Chem. A 106, 9595 (2002).
111. A. K. Wilson, D.E. Woon, K.A. Peterson, and T.H. Dunning, Jr., J. Chem. Phys. 110, 7667 (1999)
112. K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994).
113. A. Wilson, T. Van. Mourik, and T. H. Dunning, Jr., J. Mol. Struct. 388, 339 (1997).
114. E. R. Davidson, Chem. Phys. Lett. 269, 514 (1996).
115. R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
116. MOLPRO, a pachage of ab initio program design by H.-J. Werner and P. J. Knowles, version 2002. 1, R, D. Amos, A. Bemhardsson, A. Berning, P. Cel-ani, D. L. Cooper, M. J. 0. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, P. J. Knowles, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. Schuts, Cu. Schumann, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and H.-J. Wemer. University of Birmingham, Birmingham, UK, 2001.
117. R. J. Bartlett and G. D. Purvis, Int. J. Quant. Chem. 14, 516 (1978).
118. J. Cizek, Adv. Chem. Phys. 14, 35 (1969).
119. G. D. Purvis and R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).
120. H.G. Kümmel, A biography of the coupled cluster method - found in R.F. Bishop (World Scientific, Singapore, 2002).
121. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, J. Chem. Phys. 89, 7382 (1988).
122. G. E. Scuseria and H. F. Schaefer, J. Chem. Phys. 90, 3700 (1989).
123. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Quant. Chem. XIV, 545 (1978).
124. C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).
125. J. A. Pople, M. H.-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).
126. Gaussian 98 (Revision A.7), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A.Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, andJ. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
127. J. Fanck, Trans. Faraday Soc. 21, 536 (1925).
128. A. M. Meble, Y.-T. Chen, and S. H. Lin, J. Chem. Phys. 105, 9007 (1996).
129. J. -L. Chang, J. Mol. Spectrosc. 232, 102 (2005).
130. P. W. Atkins, Physical Chemistry (Oxford University, Oxford Melbourne Tokyo, 1994).
131. D. P. Chong, C. Kirby, W. M. Lau, T. Minato, and N. P. C. Westwood, Chem. Phys. 59, 75 (1981).
132. J. M. Dyke, C. Kirby, A. Morris, J. Chem. Soc. Faraday Trans. 2 79, 483 (1983).
133. A.W. Potts, W. C. Price, J. Chem. Soc. Faraday Trans. 67, 1242 (1971).
134. G. M. Almy and R. B. Horsfall, Jr., Phys. Rev. 51, 491 (1971).
135. F. J. Lovas and D. R. Johnson, J. Chem. Phys. 55, 41 (1971).
136. D. U. Webb and K. N. Rao, J. Mol. Spectrosc. 28, 121 (1968).
137. D. Andrychuk, Can. J. Phys. 29, 151. (1951).
138. S. Gewurtz, H. Lew, and P. Flainek, Can. J. Phys. 53, 1097(1975).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔