(18.210.12.229) 您好!臺灣時間:2021/03/01 07:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉明昆
研究生(外文):Ming-Kung Yeh
論文名稱:動態三液相微萃取搭配離子對液相層析偵測環境水樣中的苯氧乙酸及氯酚
論文名稱(外文):Determination of phenoxyacetic acids and chlorophenols in aqueous samples by dynamic liquid-liquid-liquid microextraction with ion-pair liquid chromatography
指導教授:黃賢達黃賢達引用關係
指導教授(外文):Shang-Da Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:動態三液相微萃取離子對液相層析苯氧乙酸氯酚
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
近年來,微型化及綠色化學的趨勢逐漸成為分析前處理的主流方向,強調快速、簡便、低成本及低污染。本文採用符合上述原則的動態三液相微萃取(Dynamic-LLLME),作為環境水樣中氯苯氧乙酸(o-CPA;p-CPA;2,4-D;2,4,5-T)及氯酚(2-CP;2,4-DCP;2,4,6-TCP;PCP)的濃縮萃取,並配合離子對液相層析(IP-HPLC)與PDA偵測器進行分離與分析。
本研究的氯苯氧乙酸及氯酚被嚴格規範其水中容許濃度,以五氯酚(PCP)最為嚴謹。為達低偵測極限,除前濃縮外,以離子對層析法沖提及分離陰離子態分析物,使氯酚與苯氧乙酸以陰離子態通過PDA偵測器,陰離子的顯著助色團效應(auxochromic effect)造成原光譜特性波長紅位移且吸收度增大,利用這些特性吸收峰定量可降低偵測極限並減少干擾。本文對於各項可能影響萃取效率的變因進行詳細探討,並實際應用本方法於真實水樣(水庫水及自來水)。
於最佳實驗條件下,方法偵測極限(MDLs)在0.06~0.5μg/L;線性相關係數(r2)在線性濃度範圍內均大於0.9982;線性濃度因不同化合物而異,大致落在0.5~500μg/L內;RSD (%)在2.6~6.5之間。兩真實水樣的相對添加回收率分別為84.1~107.3%及88.5~104.9%,顯示本分析方法不受基質干擾的影響,可成功應用於環境水樣中。
文目錄
摘要 - 2 -
Abstract - 3 -
圖目錄 - 8 -
第一章 緒論 - 10 -
1-1 研究緣起 - 10 -
1-2 分析物--氯苯氧乙酸及氯酚 - 11 -
1-2-1 氯苯氧乙酸 - 11 -
1-2-2 氯酚 - 12 -
1-2-3 苯氧乙酸與氯酚之關係 - 13 -
1-3 傳統有機污染物的前處理方法 - 14 -
1-4目前有機污染物的前處理方法 - 14 -
1-5 液相微萃取法 - 18 -
第二章 文獻回顧與研究方法 - 22 -
2-1 相關前處理技術的文獻回顧 - 22 -
2-2 研究方法介紹 - 24 -
2-2-1 LLLME原理 - 24 -
2-2-2 平衡LLLME [33] - 25 -
2-2-3 非平衡LLLME - 26 -
2-2-4 離子對液相層析(IP-HPLC) - 26 -
第三章 實驗部分 - 28 -
3-1 試藥 - 29 -
3-1-1 分析物標準品 - 29 -
3-1-2 試劑與藥品 - 29 -
3-2 標準溶液和真實樣品溶液 - 30 -
3-2-1 標準溶液 - 30 -
3-2-2 真實樣品溶液 - 30 -
3-3 儀器裝置 - 30 -
3-4 萃取步驟 - 31 -
第四章 結果與討論 - 33 -
4-1 有機溶劑的選擇 - 34 -
4-2 受層(acceptor phase)體積效應 - 35 -
4-3 萃取時間的影響 - 35 -
4-4 攪拌速率的影響 - 35 -
4-5 受層(acceptor phase)NaOH濃度的影響 - 36 -
4-6 予層(donor phase)HCl濃度的影響 - 36 -
4-7 添加鹽類(NaCl)的影響 - 37 -
4-8 分析方法的表現 - 37 -
4-9 分析方法於環境樣品的測試 - 38 -
第五章 結論 - 39 -
參考文獻 - 40 -


















表目錄
表1、中空纖維液相微萃取的應用與研究 - 48 -
表2、各分析物用以定量的特性吸收波長 - 49 -
表3、HPLC梯度沖提設定 - 50 -
表4、最佳化萃取及儀器分析條件 - 51 -
表5、分析方法的表現 - 52 -
表6、於環境樣品中添加分析物標準品的相對回收率 - 53 -























圖目錄
圖1、本文八種分析物的結構 - 52 -
圖2、單滴微萃取 - 53 -
圖3、固相微萃取纖維與固定器 - 54 -
圖4、固相微萃取裝置 - 55 -
圖5、液相微萃取法之兩相及三相系統 - 56 -
圖6、單滴微萃取(drop-in-drop system) - 57 -
圖7、單滴微萃取(Solvent microextraction into a single drop) - 58 -
圖8、注射針管壁形成薄膜層 - 59 -
圖9、單滴微萃取(Back extraction) - 60 -
圖10、液相微萃取的原理 - 61 -
圖11、利用中空纖維取代單滴微萃取的液相微萃取法 - 62 -
圖12、LGLME的質量傳遞過程示意圖 - 63 -
圖13、酚的陰離子態與分子態的共振結構 - 64 -
圖14-1、未離子化2,4-DCP的UV圖 - 65 -
圖14-2、離子化2,4-DCP的UV圖 - 66 -
圖15、LLLME裝置 - 67 -
圖16、單一溶劑的萃取結果 - 68 -
圖17、各混合溶劑與單一溶劑的比較 - 69 -
圖18、acceptor phase體積的影響 - 70 -
圖19、萃取時間的影響 - 71 -
圖20、攪拌速率的影響 - 72 -
圖21、acceptor phase NaOH濃度的影響 - 73 -
圖22、donor phase HCl濃度的影響 - 74 -
圖23、添加鹽類的影響 - 75 -
圖24、萃取未添加及添加分析物的水庫水樣的層析圖 - 76 -
圖25、萃取添加分析物後的自來水樣的層析圖 - 77 -
[1] 辛竹英, “國內農藥使用情況” 89年中日環境荷爾蒙學術研討會 (2000) 77.
[2] W. Farmletter, 1979. Doane Agriculture, Service, Inc. Washington, DC.
[3] T. Cserhati, E. Forgacs, “Phenoxyacetic Acids: Separation And Quantitative Determination” J. Chromatogr. B 717 (1998) 157.
[4] L. Zhu, K.H. Ee, L. Zhao, H.K. Lee, “Analysis of phenoxy herbicides in bovine milk by means of liquid–liquid–liquid microextraction with a hollow-fiber membrane” J. Chromatogr. A 963 (2002) 335.
[5] A.D. Corcia, M. Marchetti, R. Samperi, “Extraction And Isolation Of Phenoxy Acid Herbicides In Environmental Waters Using Two Adsorbents In One Minicartidge” Anal. Chem. 61 (1989) 1363.
[6] I.S. Kim, F.I. Sasinos, R.D. Stephens, J. Wang, M. Brown, “Determination Of Chlorinated Phenoxy Acid And Ester Herbcides In Soil And Water By Liquid Chromatography Particle Beam Mass Spectrometry And Ultraviolet Absorption Spectrophotometry” Anal. Chem. 63 (1991) 819.
[7] 陳仲強, “以液相微萃取法搭配高效能液相層析儀偵測水中苯乙酸除草劑”
國立清華大學化學研究所碩士論文 (2005)
[8] C. Baird, Environmental chemistry, 2nd edn., W.H. Freeman, New York, 1999, p. 331.
[9] 2006 Edition of the Drinking Water Standards and Health Advisories, Office of Water, U.S. Environmental Protection Agency, Washington, DC.
[10] 行政院環境保護署環署毒字第0960100652號, 民國97年1月2日.
[11] 工業技術研究院工業技術發展中心, 危險物(一)環保署新公告十三種毒化物標示與物質安全資料範例, 1994.
[12] 金相燦, 程振華, 徐南妮, 李海生, 環境毒物有機污染物化學, 1st edn., 淑馨出版社, 1998.
[13] 江文仁, 袁紹英, 張碧芬, 潘子明, 環境研究中心環境調查年報, 1993.
[14] http://water.kinmen.gov.tw/html/service/qanda5.html#q1
[15] 環署檢字第26440號公告NIEA R106.00C, 民國八十五年六月.
[16] 環署檢字第31086號公告NIEA R107.00C, 民國八十五年六月.
[17] 環署檢字第72570號公告NIEA R113.00C, 民國八十五年十二月.
[18] 環署檢字第64195號公告NIEA R114.00C, 民國八十五年十一月.
[19] D.E. Raynie, “Modern Extraction Techniques” Anal. Chem. 76 (2004) 4659.
[20] D.E. Raynie, “Modern Extraction Techniques” Anal. Chem. 78 (2006) 3997.
[21] M. Saraji, “Dynamic Headspace Liquid-Phase Microextraction Of Alcohols” J. chromatogr. A 1062 (2005) 15.
[22] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, 5th edn., Saunders College Publishing, USA, 1998, p. 768.
[23] S. Scheppers, A. Wercinski, Solid Phase Microextraction-A Practical Guide, Varian Chromatography System Walnut Creet, California, 1999.
[24] C.L. Arthur, J. Pawliszyn, “Solid Phase Microextraction With Thermal Desorption Using Fused Silica Optical Fibers” Anal. Chem. 62 (1990) 2145.
[25] Y. Kotiaho, F.R. Jauristen, T.K. Choudhury, R.G. Cooks, G.T. Tsao, “Membrane Introduction Mass-Spectrometry” Anal. Chem. 63 (1991) 875.
[26] E. Psillakis, N. Kalogerakis, “Developments In Liquid-Phase Microextraction” Trends Anal. Chem. 22 (2003) 565.
[27] 環署檢字第31083號公告NIEA R104.00C, 民國八十五年六月.
[28] H. Liu, P.K. Dasgupta, “Analytical Chemistry in a Drop. Solvent Extraction in a Microdrop” Anal. Chem. 68 (1996) 1817.
[29] M.A. Jeannot, F.F. Cantwell, “Solvent Microextraction into a Single Drop” Anal. Chem. 68 (1996) 2236.
[30] M.A. Jeannot, F.F. Cantwell, “Mass Transfer Characteristics of Solvent Extraction into a Single Drop at the Tip of a Syringe Needle” Anal. Chem. 69 (1997) 235.
[31] Y. He, H.K. Lee, “Liquid-Phase Microextraction in a Single Drop of Organic Solvent by Using a Conventional Microsyringe” Anal. Chem. 69 (1997) 4634.
[32] M. Ma, F.F. Cantwell, “Solvent Microextraction with Simultaneous Back-Extraction for Sample Cleanup and Preconcentration: Preconcentration into a Single Microdrop” Anal. Chem. 71 (1999) 388.
[33] S. Pedersen-Bjergaard, K.E. Rasmussen, “Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis” Anal. Chem. 71 (1999) 2650.
[34] G. Shen, H.K. Lee, “Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides” Anal. Chem. 74 (2002) 648.
[35] S. Pedersen-Bjergaard, K.E. Rasmussen, “Developments in hollow fibre-based, liquid-phase microextraction” Trends Anal. Chem. 23 (2004) 1.
[36] D. Kristof, D. Jo, D.W. Bavo, V.L. Herman, “Sample preparation for the analysis of volatile organic compounds in air and water matrices” J. Chromatogr. A 1153 (2007) 130.
[37] M. Rezaee, Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, “Determination of organic compounds in water using dispersive liquid–liquid microextraction” J. Chromatogr. A 1116 (2006) 1.
[38] D. Nagaraju, S.D. Huang, “Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry“ J. Chromatogr. A 1161 (2007) 89.
[39] 鍾莉雯, 李茂榮, “液相微萃取法於水中微量氯酚的偵測” 國立中興大學化學研究所碩士論文 (2002)
[40] 劉文琳, 李茂榮, “開發超臨界流體與固相微萃取線上連結技術連結氣相層析質譜儀分析環境土壤中氯酚含量之研究” 第十三屆分析技術交流研討會 (2007) 96.
[41] C.Y. Lin, S.D. Huang, “Application of liquid–liquid–liquid microextraction and ion-pair liquid chromatography coupled with photodiode array detection for the determination of chlorophenols in water” J. Chromatogr. A 1193 (2008) 79.
[42] M.B. Melwanki, S.D. Huang, “Three-phase system in solvent bar microextraction:An approach for the sample preparation of ionizable organic compounds prior to liquid chromatography” Anal. Chim. Acta 555 (2006) 139.
[43] O. Pozo, E. Pitarch, J.V. Sancho, F. Herna´ndez, “Determination of the herbicide 4-chloro-2-methylphenoxyacetic acid and its main metabolite, 4-chloro-2-methylphenol in water and soil by liquid chromatography–electrospray tandem mass spectrometry” J. Chromatogr. A 923 (2001) 75.
[44] L. Zhu, C. Tu, H.K. Lee, “Liquid-Phase Microextraction of Phenolic Compounds Combined with On-Line Preconcentration by Field-Amplified Sample Injection at Low pH in Micellar Electrokinetic Chromatography” Anal. Chem. 73 (2001) 5655.
[45] C. Basheer, H.K. Lee, “Analysis of endocrine disrupting alkylphenols, chlorophenols and bisphenol-A using hollow fiber-protected liquid-phase microextraction coupled with injection port-derivatization gas chromatography–mass spectrometry” J. Chromatogr. A 1057 (2004) 163.
[46] A. Kabir, C. Hamlet, A. Malik, “Parts per quadrillion level ultra-trace determination of polar and nonpolar compounds via solvent-free capillary microextraction on surface-bonded sol–gel polytetrahydrofuran coating and gas chromatography–flame ionization detection” J. Chromatogr. A 1047 (2004) 1.
[47] X. Jiang, S.Y. Oh, H.K. Lee, “Dynamic Liquid-Liquid-Liquid Microextraction with Automated Movement of the Acceptor Phase” Anal. Chem. 77 (2005) 1689.
[48] J. Zhang, T. Su, H.K. Lee, “Headspace Water-Based Liquid-Phase Microextraction” Anal. Chem. 77 (2005) 1988.
[49] Jingming Wu, K.H. Ee, H.K. Lee, “Automated dynamic liquid–liquid–liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters” J. Chromatogr. A 1082 (2005) 121.
[50] M. Saraji, M. Bakhshi, “Determination of phenols in water samples by single-drop microextraction followed by in-syringe derivatization and gas chromatography–mass spectrometric detection” J. Chromatogr. A 1098 (2005) 30.
[51] J.f. Liu, Y.G. Chi, G.B. Jiang, “Screening the extractability of some typical environmental pollutants by ionic liquids in liquid-phase microextraction” J. Sep. Sci. 28 (2005) 87.
[52] Cunling Ye, Qingxiang Zhou, Xinming Wang, Junping Xiao, “Determination of phenols in environmental water samples by ionic liquid-based headspace liquidphase microextraction coupled with highperformance liquid chromatography” J. Sep. Sci. 30 (2007) 42.
[53] J.F. Peng, J.F. Liu, X.L. Hu, G.B. Jiang, “Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography” J. Chromatogr. A 1139 (2007) 165.
[54] J. Zhang, T. Su, H.K. Lee, “Development and application of microporous hollow fiber protected liquid-phase microextraction via gaseous diffusion to the determination of phenols in water” J. Chromatogr. A 1121 (2006) 10.
[55] Jingming Wu, H.K. Lee, “Injection Port Derivatization Following Ion-Pair Hollow Fiber-Protected Liquid-Phase Microextraction for Determining Acidic Herbicides by Gas Chromatography/Mass Spectrometry” Anal. Chem. 78 (2006) 7292.
[56] S. Moret, M. Hidalgo, J.M. Sa´nchez’, “Development of an Ion-Pairing Liquid Chromatography Method for the Determination of Phenoxyacetic Herbicides and Their Main Metabolites:Application to the Analysis of Soil Samples” Chromatographia 63 (2006) 109.
[57] N. Fattahi, Y. Assadi, M.R.M. Hosseini, E.Z. Jahromi, “Determination of chlorophenols in water samples using simultaneous dispersive liquid–liquid microextraction and derivatization followed by gas chromatography-electron-capture detection” J. Chromatogr. A 1157 (2007) 23.
[58] N. Fattahi, S. Samadi, Y. Assadi, M.R.M. Hosseini, “Solid-phase extraction combined with dispersive liquid–liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples” J. Chromatogr. A 1169 (2007) 63.
[59] H. Xu, Y. Liao, Jinrong Yao, “Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples” J. Chromatogr. A 1167 (2007) 1.
[60] O. Chienthavorn, S. Pengpumkiat, A. Noomhormb, R.M. Smith, “Superheated water extraction and phase transfer methylation of phenoxy acid herbicides from solid matrices” J. Chromatogr. A 1152 (2007) 268.
[61] M. Saraji, B. Farajmand, “Application of single-drop microextraction combined with in-microvial derivatization for determination of acidic herbicides in water samples by gas chromatography–mass spectrometry” J. Chromatogr. A 1178 (2008) 17.
[62] 吳健三, 高效液相層析儀實務篇, 5th edn., 建宏層析企業股份有限公司, 2003, p. 40.
[63] D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, 5th edn., Saunders College Publishing, USA, 1998, p. 334.
[64] M. Palit, D. Pardasani, A.K. Gupta, D.K. Dubey, “Application of Single Drop Microextraction for Analysis of Chemical Warfare Agents and Related Compounds in Water by Gas Chromatography/Mass Spectrometry” Anal. Chem. 77 (2005) 711.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔