跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱意雯
研究生(外文):I-Wen Chiu
論文名稱:利用TritonX-100形成反式微胞調控二氧化鍺粒子的形態以及藉溶膠-凝膠法包覆於二氧化矽球之二氧化鍺奈米結構
論文名稱(外文):Morphology Control of GeO2 particles in a Triton X-100 Reverse Micelle System and Synthesis of Germainia-Coated Silica Spheres via Sol-Gel Process
指導教授:黃暄益
指導教授(外文):Michael Hsuan-Yi Huang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:71
中文關鍵詞:二氧化鍺反微胞型態殼層奈米結構二氧化矽球
外文關鍵詞:germanium oxidereverse micellemorphologycore-shell nanostructuresilica sphere
相關次數:
  • 被引用被引用:2
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
我們使用四乙氧基鍺作為前驅物在非離子型界面活性劑Triton X-100形成反式微胞的系統下,經由水解縮合作用且水相酸鹼值約1.0的條件下,成功合成出長寬約為200及150奈米粒徑的特殊六角楊桃狀二氧化鍺粒子。此反微胞系統下,隨著水相酸鹼值的增加可以將粒子的形貌從六角楊桃狀轉變成類立方體結構,並調控各種試劑的莫爾比例(分別為p, Rw, h)與不同的反應時間去探討每一個實驗參數對於粒子形貌和粒徑大小的影響。將所得到的產物利用粉末X光繞射儀,傅立葉紅外線光和拉曼光譜分析來鑑定成分以及從電子顯微鏡下觀察其特殊的形貌,而此六角楊桃形狀的成因推測可能為Triton X-100 與粒子表面間的氫鍵作用力。
對於另一種二氧化鍺的奈米結構,我們利用Stöber法製出表面具親水性的二氧化矽球再經由簡單的Solvothermal 合成法成功製備出二氧化矽–二氧化鍺的殼層奈米結構。使用四乙氧基鍺和異丙醇分別作為前驅物和溶劑,反應溫度100 °C,我們在穿透式電子顯微鏡下進行選區電子繞射得知這小於10奈米的薄層為非結晶性物質,但利用電子能譜儀及能量散佈光譜進一步分析推測其成分可能是一個非結晶相的二氧化鍺。
TABLE OF CONTENTS
Abstract i
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables ix
CHAPTER 1 AN INTRODUCTION TO GERMANIUM DIOXIDE NANOSTRUCTURES
1-1 Properties and Applications of GeO2 1
1-2 Methods of Preparation of GeO2 Nanostructures 3
1-2.1 One-Dimensional GeO2 Synthesis 3
1-2.2 Sol–Gel Process of GeO2 7
1-2.3 Fundamentals of Microemulsions 9
1-2.4 Synthesis of GeO2 Nanoparticle from Reverse Micelle 12
1-3 References 15

CHAPTER 2 MORPHOLOGY CONTROL OF GERMANIUM DIOXIDE PARTICLES IN A TRITON X-100 REVERSE MICELLE SYSTEM
2-1 Introduction 17
2-2 Experimental Section 19
2-2.1 Materials 19
2-2.2 Synthesis 20
2-1.3 Instruments and Characterization 20
2-3 Results and Discussion 22
2-3.1 Results and Characterization of the Hexagonal Star Fruit-Shaped GeO2 22
2-3.2 Effect on Particle Size and Morphology by Different p 30
2-3.3 Effect of Varying Solution pH on Morphology 31
2-3.4 Effect on Particle Size by Different Rw 36
2-3.5 Effect on Particle Size by Different h 39
2-3.6 Effect on Particle Size by Different Reaction Time 41
2-3.7 Possible Formation Process of GeO2 Particles 44
2-3.8 Optical Properties of GeO2 Particles 46
2-4 Conclusion 47
2-5 References 48

CHAPTER 3 SYNTHESIS OF GERMANIA-COATED SILICA SPHERES VIA SOL–GOL PROCESS
3-1 Introduction 50
3-2 Experimental Section 53
3-2.1 Preparation of Germania-Coated Silica Spheres with a Reverse Micelle System
53
3-2.2 Preparation of Germania-Coated Silica Spheres with a Solvothermal Method via a Sol–Gel Process 54
3-2.3 Instruments and Characterization 57
3-3 Results and Discussions 57
3-3.1 XRD, FT-IR spectrum, and SEM Investigation of Silica Spheres 57
3-3.2 Failure of GeO2 Coating on Silica Spheres by the Reverse Micelle System 60
3-3.3 Results and Characterization of GeO2-coated Silica Sphere with a Solvothermal Method via a Sol–Gel Process 61
3-3.4 Effect of Temperature and Solvent on Shell Formation 66
3-4 Conclusion 70
3-5 References 71
Chapter 1
1.Patwardhan, S. V.; Clarson, S. J. Polymer 2005, 46, 4474.
2.Wu, X. C.; Song, W. H.; Zhao, B.; Sun, Y. P.; Du, J. J. Chem. Phys. Lett. 2001, 349, 210.
3.Hidalgo, P.; Mendez, B.; Piqueras, J. Nanotechnology 2007, 18, 155203.
4.Lin, Z. Y.; Garside, B. K. Appl. Opt. 1982, 21, 4324.
5.Moskalyk, R. R. Minerals Engineering 2004, 17, 393.
6.McIntyre, J. E. Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin; England Woodhead Pub.: Cambridge, 2005.
7.Smith, G. S.; Isaacs, P. B. Acta Crystallogr. 1964, 17, 842.
8.Werner, H. B.; Aijaz, A. K. Acta Crystallogr. B 1971, 27, 2133.
9.Tamura, T.; Lu, G. H.; Yamamoto, R.; Kohyama, M. Phys. Rev. B 2004, 69, 195204.
10.Appleton, A.; Chiranjivi, T.; Jafaripour, M. in “The Physics of SiO2 and Its Interfaces”, edited by Pantelides, S. T., Pergamon Press, New York, 1978
11.Christie, D. M.; Chelikowsky, J. R. Phys. Rev. B 2000, 62, 14703.
12.Ravindra, N. M.; Weeks, R. A.; Kinser, D. L. Phys. Rev. B 1987, 36, 6132.
13.Bai, Z. G.; Yu, D. P.; Zhang, H. Z.; Ding, Y.; Wang, Y. P.; Gal, X. Z.; Hang, Q. L.; Xiong, G. C.; Feng, S. Q. Chem. Phys. Lett. 1999, 303, 311.
14.Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Adv. Mater. 2002, 14, 1396.
15.Su, Y.; Liang, X. M.; Li, S.; Chen, Y. Q.; Zhou, Q. T.; Yin, S.; Meng, X.; Kong, M. G. Mater. Lett. 2008, 62, 1010.
16.Tang, Y. H.; Zhang, Y. F.; Wang, N.; Bello, I.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 1999, 74, 3824.
17.Zhang, Y. J.; Zhu, J.; Zhang, Q.; Yan, Y. J.; Wang, N. L.; Zhang, X. Z. Chem. Phys. Lett. 2000, 317, 504.
18.Jiang, Z.; Xie, T.; Wang, G. Z.; Yuan, X. Y.; Ye, C. H.; Cai, W. P.; Meng, G. W.; Li, G. H.; Zhang, L. D. Mater. Let. 2005, 59, 416.
19.Kawai, T.; Usui, Y.; Kon-No, K. Colloid Surf., A 1999, 149, 39.
20.Wu, H. P.; Liu, J. F.; Ge, M. Y.; Niu, L.; Zeng, Y. W.; Wang, Y. W.; Lv, G. L.; Wang, L. N.; Zhang, G. Q.; Jiang, J. Z. Chem. Mater. 2006, 18, 1817.
21.Chen, X.; Cai, Q.; Zhang, J.; Chen, Z. J.; Wang, W.; Wu, Z. Y.; Wu, Z. H. Mater. Lett. 2007, 61, 535.
22.Lu, Q. Y.; Gao, F.; Li, Y. Q.; Zhou, Y. M.; Zhao, D. Y. Micropor. Mesopor. Mat. 2002, 56, 219.
23.Adachi, M.; Nakagawa, K.; Sago, K.; Murata, Y.; Nishikawa, Y. Chem. Commun. 2005, 2381.
24.Brinker, C. J.; Scherer, G.W. Sol-gel science: the physics and chemistry of sol-gel processing; Academic Press: New York, 1990.
25.Kucheyev, S. O.; Baumann, T.F.; Wang, Y. M.; Buuren, T. van; Poco, J. F.; Satcher, J. H.; Hamza, A. V. Appl. Phys. Lett. 2006, 88, 103117.
26.Krishnan, V.; Gross, S.; Muller, S.; Armelao, L.; Tondello, E.; Bertagnolli, H. J. Phys. Chem. B 2007, 111, 7519.
27.Hoar, T. P.; Schulman, J. H. Nature 1943, 152, 102.
28.Schulman, J. H.; Stoeckenius, W.; Prince, L. M. J. Phys. Chem. 1959, 63, 1677.
29.Clarke, J. H. R.; Nicholson, J. D.; Regan, K. N. J. Chem. Soc., Faraday Trans. 1 1985, 81, 1173.
30.Fletcher, P. D. I.; Howe, A. M.; Robinson, B. H. J. Chem. Soc., Faraday Trans. 1 1987, 83, 985.
31.Moran, P. D.; Bartlett, J. R.; Bowmaker, G. A.; Woolfrey, J. L.; Cooney, R. P. J. Sol-Gel Sci. Technol. 1999, 15, 251.
32.Wang, Z. L.; Liu, Y.; Zhang, Z. Handbook of nanophase and nanostructured materials Volume I: Synthesis; Kluwer Academic/Plenum: New York, 2003.
33.Pileni, M. P.; Zemb, T.; Petit, C. Chem. Phy. Lett. 1985, 115, 414.
34.Husein, M.; Rodil, E.; Vera, J. Langmuir 2003, 19, 8467.
35.Smetana, A. B.; Wang, J. S. ; Boeckl, J. ; Brown, G. J. ; Wai, C. M. Langmuir 2007, 23, 10429.
36.Bagwe, R. P.; Yang, C.; Hilliard, L. R.; Tan, W. Langmuir 2004, 20, 8336.
37.Chen, Q.; Shen, X.; Gao, H. J. Colloid Interface Sci. 2007, 308, 491.
38.Maillared, M.; Giorgio, S.; Pileni, M. P. Adv. Mater. 2002, 14, 1084 .
39.Xiong, L.; He, T. Chem. Mater. 2006, 18, 2211.

Chapter 2
1.Yamamoto, M.; Kashiwagi, Y.; Sakata, T.; Mori, H.; Nakamoto; M. Chem. Mater. 2005, 17, 5391.
2.Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124, 14316.
3.Ould-Ely, T.; Prieto-Centurion, D.; Kumar, A.; Guo, W.; Knowles, W. V.; Asokan, S.; Wong, M. S.; Rusakova, I.; Luttge, A.; Whitmire, K. H. Chem. Mater. 2006, 18, 1821.
4.Xiong, L.; He, T. Chem. Mater. 2006, 18, 2211.
5.Simmons, B. A.; Li, S. C.; John, V. T.; McPherson, G. L.; Bose, A.; Zhou, W. L.; He, J. B. Nano Lett. 2002, 2, 263.
6.Li, M.; Schnablegger, H.; Mann, S. Nature 1999, 402, 393.
7.Stathatos, E.; Lianos, P.; Del Monte, F.; Levy, D.; Tsiourvas, D. Langmuir 1997, 13, 4295.
8.Chang, C. L.; Fogler H. S. Langmuir 1997, 13, 3295.
9.Wu, X. C.; Song, W. H.; Zhao, B.; Sun, Y. P.; Du, J. J. Chem. Phys. Lett. 2001, 349, 210.
10.Hidalgo, P.; Mendez, B.; Piqueras, J. Nanotechnology 2007, 18, 155203.
11.Bai, Z. G.; Yu, D. P.; Zhang, H. Z.; Ding, Y.; Wang, Y. P.; Gal, X. Z.; Hang, Q. L.; Xiong, G. C.; Feng, S. Q. Chem. Phys. Lett. 1999, 303, 311.
12.Hu, J. Q.; Li, Q.; Meng, X. M.; Lee, C. S.; Lee, S. T. Adv. Mater. 2002, 14, 1396.
13.Su, Y.; Liang, X. M.; Li, S.; Chen, Y. Q.; Zhou, Q. T.; Yin, S.; Meng, X.; Kong, M. G. Mater. Lett. 2008, 62, 1010.
14.Tang, Y. H.; Zhang, Y. F.; Wang, N.; Bello, I.; Lee, C. S.; Lee, S. T. Appl. Phys. Lett. 1999, 74, 3824.
15.Zhang, Y. J.; Zhu, J.; Zhang, Q.; Yan, Y. J.; Wang, N. L.; Zhang, X. Z. Chem. Phys. Lett. 2000, 317, 504.
16.Jiang, Z.; Xie, T.; Wang, G. Z.; Yuan, X. Y.; Ye, C. H.; Cai, W. P.; Meng, G. W.; Li, G. H.; Zhang, L. D. Mater. Let. 2005, 59, 416.
17.Kawai, T.; Usui, Y.; Kon-No, K. Colloid Surf., A 1999, 149, 39.
18.Wu, H. P.; Liu, J. F.; Ge, M. Y.; Niu, L.; Zeng, Y. W.; Wang, Y. W.; Lv, G. L.; Wang, L. N.; Zhang, G. Q.; Jiang, J. Z. Chem. Mater. 2006, 18, 1817.
19.Chen, X.; Cai, Q.; Zhang, J.; Chen, Z. J.; Wang, W.; Wu, Z. Y.; Wu, Z. H. Mater. Lett. 2007, 61, 535.
20.Lu, Q. Y.; Gao, F.; Li, Y. Q.; Zhou, Y. M.; Zhao, D. Y. Micropor. Mesopor. Mat. 2002, 56, 219.
21.Adachi, M.; Nakagawa, K.; Sago, K.; Murata, Y.; Nishikawa, Y. Chem. Commun. 2005, 2381.
22.Patwardhan, S. V.; Clarson, S. J. Polymer 2005, 46, 4474.
23.Hidalgo, P.; Mendez, B.; Piqueras, J. Nanotechnology 2007, 18, 155203.
24.Lin, Z. Y.; Garside, B. K. Appl. Opt. 1982, 21, 4324.
25.McIntyre, J. E. Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin; England Woodhead Pub.: Cambridge, 2005.
26.Scott, J. F. Phys. Rev. B 1970, 1, 3488.
27.Kanno, Y.; Nishino, J. J. Mater. Sci. Lett. 1993, 12, 110.
28.Chen, D.; Shen, G.; Tang, K.; Liang, Z.; Zheng, H. J. Phys. Chem. B 2004, 108, 11280.
29.Chen, M.; Wu, Y. Zhou, S.; Wu, L. J. Phys. Chem. B 2008, 112, 6536.
30.Hoffmann, F.; Cornelius, Morell, J.; Fröba M. Angew. Chem. Int. Ed. 2006, 45, 3216.
31.Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
32.Lee, L. T.; Somasundran, P. Langmuir 1989, 5, 854.
33.Kubiak, W. W.; Niewiara E. Electroanalysis 2002, 14, 1169.
34.Bagwe, R. P.; Yang, C.; Hilliard, L. R.; Tan, W. Langmuir 2004, 20, 8336.
35.Curri, M. L.; Agostiano, A.; Manna, L.; Della, M. M.; Catalano, M.; Chiavarone, L.; Spagnolo, V.; Lugara, M. J. Phys. Chem. B 2000, 104, 8391.
36.Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
37.Isley, S. L.; Penn, R. L. J. Phys. Chem. C 2008, 112, 4469.
38.Arriagada, F. J.; Osseo-Asare, K. Colloids Surf., A 1999, 154, 311.
39.Chang, C. L.; Fogler, H. S. Langmuir 1997, 13, 3295.

Chapter 3
1.Jeong, U.; Kim, J. U.; Xia, Y. N.; Li, Z. Y. Nano Lett, 2005, 5, 937.
2.Arnal, P. M.; Weidenthaler, C.; Schüth, F. Chem. Mater. 2006, 18, 2733.
3.Mine, E.; Hirose, M.; Kubo, M.; Kobayashi, Y; Nagao, D.; Konno, M. J. Sol-Gel Sci.
Techn. 2006, 38, 91.
4.Xu X. L.; Asher, S. A. J. Am. Chem. Soc. 2004, 126, 7940.
5.Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.
6.Li, J.; Zeng, H. C. Angew. Chem. Int. Ed. 2005, 44, 4342.
7.Graf, C; van Blaaderen, A. Langmuir 2002, 18, 524.
8.Wang, D. Y. ; Caruso, F. Chem. Mater. 2002, 14, 1909.
9.Chen, G. C.; Kuo, C. Y.; Lu, S. Y. J. Am. Ceram. Soc. 2005, 88, 277.
10.Lou, X. W.; Yuan, C. L.; Archer, L. A. Small 2007, 3, 261.
11.Song, X. F.; Gao, L. J. Phys. Chem. C 2007, 111, 8180.
12.Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
13.Byers, C. H.; Harris, M. T. in “Ultrastructure Processing of Advanced Ceramics” (J. D. Mackenzie and D. R. Ulrich, Eds.), Wiley, New York, 1988, 843.
14.Arriagada, F. J.; Osseo-Asare, K. Colloids Surf., A 1999, 154, 311.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top