跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡昱果
研究生(外文):Yu-Kuo Tsai
論文名稱:乳酸桿菌代謝乳糖和半乳糖操縱子的選殖及調控機制並探討點突變對其乳糖代謝能力的影響
論文名稱(外文):Sequence and Regulation of Lactose and Galactose Operons in Lactobacillus rhamnosus and a point mutation that causing phenotype switch of lactose metabolism in Lactobaxillus casei
指導教授:林志侯
指導教授(外文):Thy-Hou Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:84
中文關鍵詞:乳酸桿菌乳糖半乳糖調控機制點突變自發性突變
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
乳酸桿菌(Lactobacillus)是食品發酵產業中很重要的一種細菌,他對人體及動物具有許多種的正面效益。為了瞭解Lactobacillus rhamnosus代謝乳糖及半乳糖的機制及調控,我以L. rhamnosus TCELL-1作為研究對象,首先將代謝這兩種糖類的基因選殖出並加以定序。所定序的序列中包含了9個開放閱讀框 (ORFs),它們的順序為lacTEGF接著galKETRM。在Northern blotting的實驗中,發現這段序列可產生4種mRNA (lacTEGF-galKETRM, lacTEGF, galKETRM和galETRM; 後面3種mRNA的產量明顯比第一種多),其中lac operon的mRNA在菌以乳糖當做碳源時產量最多;而gal operon的mRNA則在菌以半乳糖當做碳源時產量最多。而藉由Northern blotting及primer extension的實驗,找到了四個可能的promoter,分別位於下列ORFs序列的上游區: lacT (lacTp), galK (galKp1 和 galKp2) 和galE (galEp)。實驗進一步測試了GalK, GalE和GalT在不同種糖類中的活性,發現這些酵素可被葡萄糖抑制產生,並可被半乳糖誘導產生。合併基因序列的分析結果,我們推測gal operon具有雙重的調控機制:葡萄糖的抑制是經由CcpA (Catabolite control protein A) 和它的結合序列 (cre site);半乳糖的誘導是經由GalR和它的結合序列。另外,在L. rhamnosus TCELL-1中也可測到β-galactosidase的活性,由此推測L. rhamnosus TCELL-1在分解乳糖後,所產生的半乳糖可繼續經由Leloir pathway及 tagatose 6-phosphate pathway代謝,而直接給予的半乳糖則可經由Leloir pathway代謝。
Lactobacillus casei 也是一種很重要的益生菌,他常被用來發酵乳製品,而乳製品中最主要的碳源是乳糖,但不是所有的L. casei 都能代謝乳糖。在實驗中,我發現 L. casei ATCC 27139 無法代謝乳糖,但如將他塗佈在只含乳糖當作碳源的培養皿上,將可獲得可代謝乳糖的菌落。如將L. casei ATCC 27139和他的Lac+ 轉變株R1的乳糖代謝相關DNA序列 (lacTEGF-galKETRM) 做比較,發現這段DNA序列上的差別僅有一個核苷酸,其位於lacTEGF promoter (lacTp)的區域。而這段lacTEGF-galKETRM所產生的蛋白和之前所發表的L. casei (Lac+) 的相關蛋白有著96%~100%的相似度。接著又選殖出了41隻Lac+轉變株,經由DNA序列的比對,發現他們的lacTp promoter也皆含有一個點突變。依照突變位置的不同,可將這些轉變株分成6類。而藉由Northern blotting及primer extension的實驗,我們發現Lac+ 轉變株R1的lacTp promoter的確具有活性,但L. casei ATCC 27139的lacTp promoter活性卻偵測不到。由這些結果推測,lacTp promoter上所發生的點突變的確能讓其恢復活性,而轉錄出完整的lacTEGF operon,進而恢復L. casei ATCC 27139代謝lactose的能力。
A gene cluster containing nine ORFs involved in the metabolism of lactose and galactose in L. rhamnosus TCELL-1 was sequenced and characterized. The order of the ORFs was lacTEGF and galKETRM. Northern blotting experiments revealed that the gene cluster could be transcribed as one lacTEGF-galKETRM mRNA though there were three major transcripts (lacTEGF, galKETRM and galETRM) detected for the gene cluster. The transcription of the lac or gal operon was independently induced in the presence of lactose or galactose. Northern blotting and primer extension experiments found the presence of four putative promoters upstream from the ORFs lacT (lacTp), galK (galKp1 and galKp2) and galE (galEp). The measurements of enzymatic activities of GalK, GalE and GalT suggested that expression of the gal operon was subjected to a glucose repression and galactose activation mechanism. We suspect that the gal operon could be regulated by a dual regulation mechanism, namely glucose repression possibly mediated by CcpA (Catabolite control protein A) and galactose induction through GalR and its binding sites. Besides, the β-galactosidase activity could also be detected in L. rhamnosus TCELL-1. These results indicated that the galactose moiety of lactose in L. rhamnosus TCELL-1 could be metabolized by two alternative pathways (the Leloir and the tagatose 6-phosphate pathways) while galactose metabolism could be mediated by the Leloir pathway. This work provides important information of sugar metabolism in L. rhamnosus.
Lactose metabolism is a changeable phenotype in strains of Lactobacillus casei. In this study, we found that L. casei ATCC 27139 was unable to utilize lactose. However, under the lactose selection, the spontaneous revertant colonies (Lac+) were obtained. A gene cluster (lacTEGF-galKETRM) involved in the metabolism of lactose and galactose in L. casei ATCC 27139 (Lac-) and its Lac+ revertant (designated as strain R1) was sequenced and characterized. We found that only one nucleotide located in the lacTEGF promoter (lacTp) of these two lac-gal gene clusters was different. The protein sequence identity between the lac-gal gene cluster and those reported previously for some L. casei (Lac+) strains was high namely, 96 to 100% identity was found and no premature stop codon was identified on it. A single point mutation occurred on the same lacTp promoter region was also detected for 41 other independently isolated Lac+ revertants of L. casei ATCC 27139. The revertants could be divided into six classes based on the positions of the point mutations detected. Northern blotting and primer extension experiments for the activity of the lacTp promoter further found that the lacTp promoter of strain R1 was functional while that of L. casei ATCC 27139 was not. These results suggest that a single point mutation on the lacTp promoter was able to restore the transcription of fully functional lacTEGF operon and caused a phenotype switch from Lac- to Lac+ for L. casei ATCC 27139 (Lac-).
中文摘要--------------------------------------------------i
English abstract----------------------------------------iii
Table of contents-----------------------------------------v

Chapter 1: Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1
1-1 Introduction------------------------------------------1
1-2 Materials and methods---------------------------------4
1-2-1 Bacterial strains and growth conditions-------------4
1-2-2 DNA isolation and library construction--------------6
1-2-3 Library screening and DNA amplification-------------6
1-2-4 Nucleotide sequencing and sequence analysis---------7
1-2-5 DNA amplification procedure-------------------------8
1-2-6 Determination of the lac-gal gene cluster in other lactobacilli----------------------------------------------9
1-2-7 RNA isolation and Northern blot analysis-----------10
1-2-8 Primer extension experiment------------------------11
1-2-9 Preparation of cell extracts, protein analysis and enzyme assay---------------------------------------------12
1-2-10 Determination of β-galactosidase activity---------14
1-2-11 Nucleotide sequence accession number--------------14
1-3 Results----------------------------------------------14
1-3-1 Existence of the lac-gal gene cluster--------------14
1-3-2 Sequence analysis of the lac-gal gene cluster------15
1-3-3 Transcription and primer extension analyses of the lac-gal gene cluster-------------------------------------16
1-3-4 Growth pattern and GalK, GalE and GalT activities measured in different carbohydrates----------------------18
1-3-5 Expression of β-galactosidase----------------------19
1-4 Discussion-------------------------------------------20
1-5 Tables-----------------------------------------------26
1-6 Figures----------------------------------------------29
1-7 Appendixes-------------------------------------------34

Chapter 2: A point mutation that causing phenotype switch of lactose metabolism in Lactobacillus casei
2-1 Introduction-----------------------------------------41
2-2 Materials and methods--------------------------------43
2-2-1 Bacterial strains and growth conditions------------44
2-2-2 Accumulation of Lac+ colonies and viability assay--44
2-2-3 Selection and identification of spontaneous mutations----------------------------------------------------------45
2-2-4 Stability of the revertants------------------------46
2-2-5 Carbohydrate fermentation--------------------------46
2-2-6 Sequencing of the lac-gal gene cluster from L. casei ATCC 27139-----------------------------------------------47
2-2-7 Nucleotide sequencing and sequence analysis--------48
2-2-8 DNA amplification procedure------------------------49
2-2-9 RNA isolation and Northern blot analysis-----------49
2-2-10 Primer extension experiment-----------------------50
2-2-11 Nucleotide sequence accession numbers-------------51
2-3 Results----------------------------------------------51
2-3-1 Accumulation of Lac+ revertants--------------------51
2-3-2 Stability of the revertant and carbohydrate fermentation---------------------------------------------52
2-3-3 Sequence analysis of the lac-gal gene cluster------53
2-3-4 Spectra of spontaneous mutations-------------------54
2-3-5 Transcription and primer extension analyses of the lacTEGF operon-------------------------------------------55
2-4 Discussion-------------------------------------------56
2-5 Tables-----------------------------------------------62
2-6 Figures----------------------------------------------64
2-7 Appendixes-------------------------------------------68
References-----------------------------------------------74
附錄-----------------------------------------------------84
Ackerson, J. W. and Gralla, J. D. (1982) In vivo expression of lac promoter variants with altered -10, -35, and spacer sequences. Cold Spring Harbor Symp Quant Biol 47, 473–476.

Ajdic, D. and Ferretti, J. J. (1998) Transcriptional regulation of the Streptococcus mutans gal operon by the GalR repressor. J Bacteriol 180, 5727–5732.

Ajdic, D., Sutcliffe, I., Russell, R. R. B. and Ferretti, J. J. (1996) Organization and nucleotide sequence of the Streptococcus mutans galactose operon. Gene 180, 137–144.

Alander, M., Satokari, R., Korpela, R., Saxelin, M., Vilpponen-Salmela, T., Mattila-Sandholm, T. and von Wright, A. (1999) Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Appl Environ Microbiol 65, 351–354.

Alpert, C.-A. and Chassy, B. M. (1988) Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei. Gene 62, 277–288.

Alpert, C.-A. and Chassy, B. M. (1990) Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei: evidence that a cysteine residue is essential for sugar phosphorylation. J Biol Chem 265, 22561–22560.

Alpert, C.-A. and Siebers, U. (1997) The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the BglG family of transcriptional antiterminators. J Bacteriol 179, 1555–1562.

Aoyama, T., Takanami, M., Ohtsuka, E., Taniyama, Y., Marumoto, R., Sato, H. and Ikehara, M. (1983) Essential structure of E. coli promoter: effect of spacer length between the two consensus sequences on promoter function. Nucleic Acids Res 17, 5855–5864.

Aymerich, S. and Steinmetz, M. (1992) Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. Proc Natl Acad Sci USA 89, 10410–10414.

Berman, M. L. and Landy, A. (1979) Promoter mutations in the transfer RNA gene tyrT of Escherichia coli. Proc Natl Acad Sci USA 76, 4303–4307.

Bettenbrock, K. and Alpert, C.-A. (1998) The gal genes for the Leloir pathway of Lactobacillus casei 64H. Appl Environ Microbiol 64, 2013–2019.

Bettenbrock, K., Siebers, U., Ehrenreich, P. and Alpert, C.-A. (1999) Lactobacillus casei 64H contains a phosphoenolpyruvate-dependent phosphotransferase system for uptake of galactose, as confirmed by analysis of ptsH and different gal mutants. J Bacteriol 181, 225–230.

Boucher, I., Vadeboncoeur, C. and Moineau, S. (2003) Characterization of genes involved in the metabolism of α-galactosides by Lactococcus raffinolactis. Appl Environ Microbiol 69, 4049–4056.

Bouffard, G., Rudd, K. and Adhya, S. L. (1994) Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J Mol Biol 244, 269–278.

Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.

Breidt, F. J., Hengstenberg, W., Finkeldei, U. and Stewart, G. C. (1987) Identification of the genes for the lactose-specific components of the phosphotransferase system in the lac-operon of Staphylococcus aureus. J Biol Chem 262, 16444–16449.

Breidt, F. J. and Stewart, G. C. (1987) Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-β-galactosidase gene. Appl Environ Microbiol 53, 969–973.

Bringel, F. and Hubert, J.-C. (2003) Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus, and L. casei: prevalence of CO2-dependent auxotrophs and characterization of deficient arg genes in L. plantarum. Appl Environ Microbiol 69, 2674–2683.
Bringel, F. and Hubert, J.-C. (2004) Lactobacilli evolve by cumulative DNA degeneration. Lait 84, 25–32.

Bull, H. J., McKenzie, G. J., Hastings, P. J. and Rosenberg, S. M. (2000) Evidence that stationary-phase hypermutation in the Escherichia coli chromosome is promoted by recombination. Genetics 154, 1427–1437.

Cairns, J. and Foster, P. L. (1991) Adaptive reversion of a frameshift mutation in Escherichia coli. Genetics 128, 695–701.

Cavin, J. F., Dartois, V., Labarre, C. and Diviès, C. (1999) Cloning of branched chain amino acid biosynthesis genes and assays of α-acetolactate synthase activities in Leuconostoc mesenteroides subsp. cremoris. Res Microbiol 150, 189–198.

Chabot, S., Yu, H. L., de Léséleuc, L., Cloutier, D., van Calsteren, M. R., Lessard, M., Roy, D., Lacroix, M. and Oth, D. (2001) Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-γ in mouse splenocytes. Lait 81, 683–697.

Chassy, B. M., Gibson, E. and Giuffrida, A. (1976) Evidence for extrachromosomal elements in Lactobacillus. J Bacteriol 127, 1576–1578.

Chatwin, H. M. and Summers, D. K. (2001) Monomer-dimer control of the ColE1 Pcer promoter. Microbiology 147, 3071–3081.

Chen, Y. S. and Steele, J. L. (2005) Analysis of promoter sequences from Lactobacillus helveticus CNRZ32 and their activity in other lactic acid bacteria. J Appl Microbiol 98, 64–72.

Deguchi, Y. and Morishita, T. (1992) Nutritional requirements in multiple auxotrophic lactic acid bacteria: genetic lesions affecting amino acid biosynthetic pathways in Lactococcus lactis, Enterococcus faecium, and Pediococcus acidilactici. Biosci Biotechnol Biochem 56, 913–918.

Delorme, C., Godon, J.-J., Ehrlich, S. D. and Renault, P. (1993) Gene inactivation in Lactococcus lactis: histidine biosynthesis. J Bacteriol 175, 4391–4399.

de Vos, W. M. and Vaughan, E. E. (1994) Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol Rev 15, 217–237.

de Vos, W. M., Boerrigter, I., van Rooyen, R. J., Reiche, B. and Hengstenberg, W. (1990) Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J Biol Chem 265, 22554–22560.

Efthymiou, C. and Hansen, P. A. (1962) An antigenic analysis of Lactobacillus acidophilus. J Infect Dis 110, 258–267.

Erlandson, K. A., Park, J.-H., Wissam, E. K., Kao, H.-H., Basaran, P., Brydges, S. and Batt, C. A. (2000) Dissolution of xylose metabolism in Lactococcus lactis. Appl Environ Microbiol 66, 3974–3980.

Ezendam, J. and van Loveren, H. (2008) Lactobacillus casei Shirota administered during lactation increases the duration of autoimmunity in rats and enhances lung inflammation in mice. Br J Nutr 99, 83–90.

Fekete, R. A., Miller, M. J. and Chattoraj, D. K. (2003) Fluorescently labeled oligonucleotide extension: a rapid and quantitative protocol for primer extension. BioTechniques 35, 90–98.

Flickinger, J. L., Porter, E. V. & Chassy, B. M. (1986) Molecular cloning of a plasmid-encoded β-galactosidase from Lactobacillus casei. In Abstracts of the 86th Annual Meeting of the American Society for Microbiology. abstract H-179, p. 156. Washington, DC: American Society for Microbiology.

Germond, J. E., Lapierre, L., Delley, M., Mollet, B., Felis, G. E. and Dellaglio, F. (2003) Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol 20, 93–104.

Godon, J.-J., Delorme, C., Bardowski, J., Chopin, M.-C., Ehrlich, S. D. and Renault, P. (1993) Gene inactivation in Lactococcus lactis: branched-chain amino acid biosynthesis. J Bacteriol 175, 4383–4390.

Gosalbes, M. J., Monedero, V., Alpert, C.-A. and Pe´rez-Martinez, G. (1997) Establishing a model to study regulation of the lactose operon in Lactobacillus casei. FEMS Microbiol Lett 148, 83–89.

Gosalbes, M. J., Monedero, V. and Pe´rez-Martinez, G. (1999) Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. J Bacteriol 181, 3928–3934.

Gosalbes, M. J., Esteban, C. D. and Pe´rez-Martinez, G. (2002) In vivo effect of mutations in the antiterminator LacT in Lactobacillus casei. Microbiology 148, 695–702.

Honeyman, A. L. and Curtiss, R. I. (1993) Isolation, characterization and nucleotide sequence of the Streptococcus mutans lactose-specific Enzyme II (lacE) gene of the PTS and the phospho-β-galactosidase (lacG) gene. J Gen Microbiol 139, 2685–2694.

Hosono, A., Lee, J., Ametani, A., Natsume, M., Hirayama, M., Adachi, T. and Kaminogawa, S. (1997) Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem 61, 312–316.

Houman, F., Diaz-Torres, M. R. and Wright, A. (1990) Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein. Cell 62, 1153–1163.

Hueck, C. J., Hillen, W. and Saier, M. H. Jr. (1994) Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria. Res Microbiol 145, 503–518.

Isselbacher, K. J. (1974) Uridyl-Transferase. Methoden der enzymatischen Analyse, 3rd edn. ed. Bergmeyer, H. U. pp. 830–833. Verlag Chemie, Weinheim, Germany.

Kandler, O. and Weiss, N. (1986) Genus Lactobacillus. In Bergey’s Manual of Systematic Bacteriology ed. Sneath, P.H.A., Mair, N.S., Sharpe, M.E. and Holt, J.G. vol 2, 9th edn. pp. 1063–1065. Baltimore: Williams and Wilkins.

Kashket, E. R. and Wilson, T. H. (1973) Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc Natl Acad Sci USA 70, 2866–2869.

Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T. and Itoh, T. (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40, 169–175.

Lapierre, L., Mollet, B. and Germond, J. E. (2002) Regulation and adaptive evolution of lactose operon expression in Lactobacillus delbrueckii. J Bacteriol 184, 928–935.

le Coq, D., Lindner, C., Kru¨ger, S., Steinmetz, M. and Stu¨lke, J. (1995) New β-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177, 1527–1535.

Levander, F., Svensson, M. and Rådström, P. (2002) Enhanced exopolysaccharide production by metabolic engineering of Streptococcus thermophilus. Appl Environ Microbiol 68, 784–790.

Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D. M., Hawkins, T., Plengvidhya, V., Welker, D., Hughes, J., Goh, Y., Benson, A., Baldwin, K., Lee, J. H., Díaz-Muñiz, I., Dosti, B., Smeianov, V., Wechter, W., Barabote, R., Lorca, G., Altermann, E., Barrangou, R., Ganesan, B., Xie, Y., Rawsthorne, H., Tamir, D., Parker, C., Breidt, F., Broadbent, J., Hutkins, R., O'Sullivan, D., Steele, J., Unlu, G., Saier, M., Klaenhammer, T., Richardson, P., Kozyavkin, S., Weimer, B. and Mills, D. (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103, 15611–15616.

Mandecki, W. and Reznikoff, W. S. (1982) A lac promoter with a changed distance between -10 and -35 regions. Nucleic Acids Res 10, 903–912.

Mandecki, W., Goldman, R. A., Powell, B. S. and Caruthers, M. H. (1985) lac up-promoter mutants with increased homology to the consensus promoter sequence. J Bacteriol 164, 1353–1355.

Mathews, D. H., Sabina, J., Zucker, M. and Turner, H. (1999) Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J Mol Biol 288, 911–940.

McCracken, A., Turner, M. S., Giffard, P., Hafner, L. M. and Timms, P. (2000) Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch Microbiol 173, 383–389.

Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M. and Fujita, Y. (2000) Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28, 1206–1210.

Mollet, B. and Pilloud, N. (1991) Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes. J Bacteriol 173, 4464–4473.

Monedero, V., Gosalbes, M. J. and Pe´rez-Martinez, G. (1997) Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA. J Bacteriol 179, 6657–6664.

Morishita, T., Fukada, T., Shirota, M. and Yura, T. (1974) Genetic basis of nutritional requirements in Lactobacillus casei. J Bacteriol 120, 1078–1084.

Morishita, T., Deguchi, Y., Yajima, M., Sakurai, T. and Yura, T. (1981) Multiple nutritional requirements of lactobacilli: genetic lesions affecting amino acid biosynthetic pathways. J Bacteriol 148, 64–71.

Muscariello, L., Marasco, R., de Felice, M. and Sacco, M. (2001) The functional ccpA gene is required for carbon catabolite repression in Lactobacillus plantarum. Appl Environ Microbiol 67, 2903–2907.

Nakajima, H., Suzuki, Y., Kaizu, H. and Hirota, T. (1992) Cholesterol lowering activity of ropy fermented milk. J Food Sci 57, 1327–1329.

Nomura, M., Kobayashi, M., Ohmomo, S. and Okamoto, T. (2000) Inactivation of the glutamate decarboxylase gene in Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 66, 2235–2237.

Ross, C., Pybus, C., Pedraza-Reyes, M., Sung, H. M., Yasbin, R. E. and Robleto, E. (2006) Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 188, 7512–7520.

Oehlmann, W. and Auling, G. (1999) Ribonucleotide reductase (RNR) of Corynebacterium glutamicum ATCC 13032--genetic characterization of a second class IV enzyme. Microbiology 145, 1595–1604.

Poolman, B., Royer, T. J., Mainzer, S. E. and Schmidt, B. F. (1990) Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDP-glucose 4-epimerase. J Bacteriol 172, 4037–4047.

Poolman, B. (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol Rev 12, 125–147.

Porter, E. V. and Chassy, B. M. (1988) Nucleotide sequence of the β-D-phospho-galactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene 62, 263–276.

Pouwels, P. H. and Leer, R. J. (1993) Genetics of lactobacilli. Antonie Leeuwenhoek 64, 85–107.

Premi, L., Sandine, W. E. and Elliker, P. R. (1972) Lactose-hydrolyzing enzymes of Lactobacillus species. Appl Microbiol 24, 51–57.

Rosey, E. L. and Stewart, G. C. (1992) Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J Bacteriol 174, 6159–6170.

Rosey, E. L., Oskouian, B. and Stewart, G. C. (1991) Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol 173, 5992–5998.

Sambrook, J. and Russell, D. W. (2001) Molecular cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

Saxelin, M. (1997) Lactobacillus GG - a human probiotic strain with thorough clinical documentation. Food Rev Int 13, 293–313.

Schnetz, K., Stu¨lke, J., Gertz, S., Kru¨ger, S., Krieg, M., Hecker, M. and Rak, B. (1996) LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178, 1971–1979.

Steele, D. F. and Jinks-Robertson, S. (1992) An examination of adaptive reversion in Saccharomyces cerevisiae. Genetics 132, 9–21.

Stefano, J. E. and Gralla, J. D. (1982) Spacer mutations in the lac ps promoter. Proc Natl Acad Sci USA 79, 1069–1072.

Sugita, T. and Togawa, M. (1994) Efficacy of Lactobacillus preparation biolactis powder in children with rotavirus enteritis. Jpn J Pediatr 47, 2755–2762.

Sung, H.-M. and Yasbin, R. E. (2002) Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J Bacteriol 184, 5641–5653.

Thompson, J. (1979) Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo. J Bacteriol 140, 774–785.

Thompson, J. (1980) Galactose transport systems in Streptococcus lactis. J Bacteriol 144, 683–691.

Tsai, Y.-K. and Lin, T.-H. (2006) Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. J Appl Microbiol 100, 446–459.

Turchet, P., Laurenzano, M., Auboiron, S. and Antoine, J. M. (2003) Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: a randomised, controlled pilot study. J Nutr Health Aging 7, 75–77.

Vaillancourt, K., Moineau, S., Frenette, M., Lessard, C. and Vadeboncoeur, C. (2002) Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products. J Bacteriol 184, 785–793.

van Rooijen, R. J. and de Vos, W. M. (1990) Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J Biol Chem 265, 18499–18503.

Vaughan, E. E., van den Bogaard, P. T. C., Catzeddu, P., Kuipers, O. P. and de Vos, W. M. (2001) Activation of silent gal genes in the lac-gal regulon of Streptococcus thermophilus. J Bacteriol 183, 1184–1194.

Viana, R., Monedero, V., Dossonnet, V., Vadeboncoeur, C., Pe´rez-Martinez, G. and Deutscher, J. (2000) Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol Microbiol 36, 570–584.

Vidgrén, G., Palva, I., Pakkanen, R., Lounatmaa, K. and Palva, A. (1992) S-layer protein gene of Lactobacillus brevis: cloning by polymerase chain reaction and determination of the nucleotide sequence. J Bacteriol 174, 7419–7427.

Ward, L. J. H. and Timmins, M. J. (1999) Differentiation of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus by polymerase chain reaction. Lett in Appl Microbiol 29, 90–92.

Xu, D.-Q., Thompson, J. and Cisar, J. O. (2003) Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38. J Bacteriol 185, 5419–5430.

Yamada, M., Izu, H., Nitta, T., Kurihara, K. and Sakurai. T. (1998) High-temperature, nonradioactive primer extension assay for determination of a transcription initiation site. BioTechniques 25, 72–75.

Yang, Z., Lu, Z. and Wang, A. (2001) Study of adaptive mutations in Salmonella typhimurium by using a super-repressing mutatnt of a trans regulatory gene purR. Mutat Res 484, 95–102.

Yang, Z., Lu, Z. and Wang, A. (2006) Adaptive mutations in Salmonella typhimurium phenotypic of purR super-repression. Mutat Res 595, 107–116.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top