跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 10:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高琨智
研究生(外文):Kun-Jhih Gao
論文名稱:人類及牛隻的介白素混種蛋白質之核磁共振結構研究
論文名稱(外文):NMR structure study of the humanized bovine CXCL8(3-74)K11R/G31P
指導教授:程家維
指導教授(外文):Jya-Wei Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:48
中文關鍵詞:人類及牛隻的介白素混種蛋白質之核磁共振結構研究
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Interleukin-8 (IL8), a kind of CXC chemokines with an ELR motif, is a
novel type of neutrophil-activating cytokine. IL8 with small molecular weight of
8.5 kDa plays a pivotal role in inflammatory response. Overexpression of IL8
would cause acute inflammatory response. Thus it may be a therapeutic target to
the antagonist. Professor John Gordon indicates that bovine IL8(3-74) K11R/G31P
mutation is a potential antagonist and the humanized bovine IL8(3-74)
K11R/G31P(hbG31P) also remain the ability of antagonist . .However, the
structure of it was still unknown. In this study , we investigated structural of
hbG31P. The backbone sequential assignments were decide with five triple
resonance experiments (HNCA, HNCO, HNCACO, CBCANH, and
CBCA(CO)NH). Side chain assignments were also determined with
HBHACONH, HCC(CO)NH and HCCH-TOCSY. Secondary structures were
predicted via PSICSI analyses. These results were compared with human
K11R/G31P and indicated that the pattern of secondary structure is similar to
human IL8 K11R/G31P. However, their function were opposing to wildtype IL-8.
We suggest that the cis-trans conformation of Pro31 and Pro play an important
roller. Furthermore, we work toward the purpose.
介白素-8(Interleukin-8, IL8)為一72 個胺基酸組成,分
子量約為8.5 千道耳吞的蛋白質。由於IL8 具有引起白血球化學傾向
的能力,能誘導發炎反應,因此其和許多發炎性疾病有關,因此過多
的介白素反應會造成一些過度發炎反應。John Gordon 教授在2002
年發現,對小牛IL8 進行K11R/G31P 兩個點突變後,此突變的小牛
IL8 相似物對IL8 具有功能上的拮抗作用,之後也發現人類化的小牛
IL8 也具有此拮抗作用。因此我們決定利用核磁共振儀,對此相似物
進行結構上的分析。利用HNCA、HNCO、HNCACO、CBCANH 和
CBCA(CO)NH 光譜,我們可以得到此相似物之骨架序列光譜的前後
標定順序關係,而胺基酸上側鏈的氫訊號則是經由HBHACONH、
HCCH-TCOSY 以及HCC(CO)NH 等光譜實驗來觀測。除此之外,
我們利用上述得到的結果做化學位移索引(CSI)之統合分析,然後
跟人類的的介白素相似物做比較,發現他們二級結構組成相似。但是
它們卻擁有跟介白素相反的功能,所以我們推論或許是因為在脯胺酸
31 和脯胺酸32 正反向異購物的組成有很大的關係。目前我們也朝這
個目標進行實驗。
ABSTRACT ...........................................................................................................................................1
摘要.........................................................................................................................................................2
CHAPTER 1 INTRODUCTION........................................................................................................3
CYTOKINE............................................................................................................................................3
CHEMOKINES ......................................................................................................................................3
INTERLEUKIN-8(IL8/CXCL8)..............................................................................................................4
ANTAGONIST .......................................................................................................................................5
CHAPTER 2 MATERIALS AND METHODS .................................................................................7
PREPARATION AND PURIFICATION OF PROTEIN SAMPLE....................................................................7
A. Construction of K11R/G31P Expression Plasmid ....................................................................7
B. Preparation of competent cell ...................................................................................................8
C. Transformation.........................................................................................................................8
D. Expression of hbG31P...............................................................................................................9
E. Isotope labeling of sample for NMR.......................................................................................10
F. Purification of hbG31P............................................................................................................10
CIRCULAR DICHROISM SPECTROSCOPY (CD) ..................................................................................... 11
PREDICTION OF PERCENTAGES OF PROTEIN SECONDARY STRUCTURE FROM CD SPECTRA...........13
MASS SPECTROMETRY.....................................................................................................................13
NMR SPECTROSCOPY ........................................................................................................................14
NMR EXPERIMENTS ..........................................................................................................................15
DATA PROCESSING AND ANALYSIS......................................................................................................15
THE SECONDARY STRUCTURE PREDICTION OF CHEMICAL SHIFT INDEX.........................................16
CHAPTER 3 RESULTS.......................................................................................................................17
EXPRESSION, PURIFICATION AND PROPERTIES OF PROTEIN SAMPLE .................................................17
AMINO ACID SEQUENCE ALIGNMENT OF K11R/G31P.......................................................................18
CONFORMATIONAL ANALYSIS BASED ON CIRCULAR DICHROISM (CD) OF HBG31P.....................18
RESONANCE ASSIGNMENT ................................................................................................................19
Backbone assignments .................................................................................................................19
Side chain assignments ................................................................................................................20
PREDICTION OF CHEMICAL SHIFT INDEX (CSI) ...............................................................................21
NOE ASSIGNMENT............................................................................................................................22
CHAPTER4 DISCUSSION..............................................................................................................23
FIGURES ...........................................................................................................................................25
TABLES ...............................................................................................................................................43
REFERENCE ......................................................................................................................................47
Baggiolini, M. (1998). Chemokines and leukocyte traffic. Nature 392, 565-568.
Baggiolini, M., Dewald, B., and Moser, B. (1997). Human chemokines: an update.
Annu Rev Immunol 15, 675-705.
Baggiolini, M., Moser, B., and Clark-Lewis, I. (1994). Interleukin-8 and related
chemotactic cytokines. The Giles Filley Lecture. Chest 105, 95S-98S.
Bizzarri, C., Beccari, A.R., Bertini, R., Cavicchia, M.R., Giorgini, S., and Allegretti,
M. (2006). ELR+ CXC chemokines and their receptors (CXC chemokine receptor 1
and CXC chemokine receptor 2) as new therapeutic targets. Pharmacol Ther 112,
139-149.
Clore, G.M., Appella, E., Yamada, M., Matsushima, K., and Gronenborn, A.M. (1990).
Three-dimensional structure of interleukin 8 in solution. Biochemistry 29, 1689-1696.
Fujii, A., Ohshima, K., Hamasaki, M., Makimoto, Y., Haraoka, S., Utsunomiya, H.,
Okazaki, M., and Kikuchi, M. (2004). Differential expression of chemokines,
chemokine receptors, cytokines and cytokine receptors in diffuse large B cell
malignant lymphoma. Int J Oncol 24, 529-538.
Gayle, R.B., 3rd, Sleath, P.R., Srinivason, S., Birks, C.W., Weerawarna, K.S., Cerretti,
D.P., Kozlosky, C.J., Nelson, N., Vanden Bos, T., and Beckmann, M.P. (1993).
Importance of the amino terminus of the interleukin-8 receptor in ligand interactions.
J Biol Chem 268, 7283-7289.
Gordon, J.R., Li, F., Zhang, X., Wang, W., Zhao, X., and Nayyar, A. (2005). The
combined CXCR1/CXCR2 antagonist CXCL8(3-74)K11R/G31P blocks neutrophil
infiltration, pyrexia, and pulmonary vascular pathology in endotoxemic animals. J
Leukoc Biol 78, 1265-1272.
Hung, L.H., and Samudrala, R. (2003a). Accurate and automated classification of
protein secondary structure with PsiCSI. Protein Sci 12, 288-295.
Hung, L.H., and Samudrala, R. (2003b). PROTINFO: Secondary and tertiary protein
structure prediction. Nucleic Acids Res 31, 3296-3299.
Kremlev, S.G., Roberts, R.L., and Palmer, C. (2004). Differential expression of
chemokines and chemokine receptors during microglial activation and inhibition. J
Neuroimmunol 149, 1-9.
LaRosa, G.J., Thomas, K.M., Kaufmann, M.E., Mark, R., White, M., Taylor, L., Gray,
G., Witt, D., and Navarro, J. (1992). Amino terminus of the interleukin-8 receptor is a
major determinant of receptor subtype specificity. J Biol Chem 267, 25402-25406.
Li, F., and Gordon, J.R. (2001). Il-8((3-73))K11R is a high affinity agonist of theneutrophil CXCR1 and CXCR2. Biochem Biophys Res Commun 286, 595-600.
Li, F., Zhang, X., and Gordon, J.R. (2002). CXCL8((3-73))K11R/G31P antagonizes
ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses
to CXCL8/IL-8. Biochem Biophys Res Commun 293, 939-944.
Limatola, C., Di Bartolomeo, S., Catalano, M., Trettel, F., Fucile, S., Castellani, L.,
and Eusebi, F. (2005). Cysteine residues are critical for chemokine receptor CXCR2
functional properties. Exp Cell Res 307, 65-75.
Mallis, R.J., Brazin, K.N., Fulton, D.B., and Andreotti, A.H. (2002). Structural
characterization of a proline-driven conformational switch within the Itk SH2 domain.
Nat Struct Biol 9, 900-905.
Mehrad, B., Strieter, R.M., Moore, T.A., Tsai, W.C., Lira, S.A., and Standiford, T.J.
(1999). CXC chemokine receptor-2 ligands are necessary components of
neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol 163,
6086-6094.
Skelton, N.J., Quan, C., Reilly, D., and Lowman, H. (1999). Structure of a CXC
chemokine-receptor fragment in complex with interleukin-8. Structure 7, 157-168.
Weber, C. (2003). Novel mechanistic concepts for the control of leukocyte
transmigration: specialization of integrins, chemokines, and junctional molecules. J
Mol Med 81, 4-19.
Wishart, D.S., Bigam, C.G., Holm, A., Hodges, R.S., and Sykes, B.D. (1995). 1H, 13C
and 15N random coil NMR chemical shifts of the common amino acids. I.
Investigations of nearest-neighbor effects. J Biomol NMR 5, 67-81.
Wishart, D.S., and Sykes, B.D. (1994). The 13C chemical-shift index: a simple
method for the identification of protein secondary structure using 13C chemical-shift
data. J Biomol NMR 4, 171-180.
Yu, Y., Sweeney, M.D., Saad, O.M., Crown, S.E., Hsu, A.R., Handel, T.M., and Leary,
J.A. (2005). Chemokine-glycosaminoglycan binding: specificity for CCR2 ligand
binding to highly sulfated oligosaccharides using FTICR mass spectrometry. J Biol
Chem 280, 32200-32208.
Zhao, X., Li, F., Town, J.R., Zhang, X., Wang, W., and Gordon, J.R. (2007).
Humanized forms of the CXCR1/CXCR2 antagonist, bovine
CXCL8((3-74))K11R/G31P, effectively block ELR-CXC chemokine activity and
airway endotoxemia pathology. Int Immunopharmacol 7, 1723-1731.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top