跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/18 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何昇儒
研究生(外文):Sheng-Ru Ho
論文名稱:具連續波雷射注入之高重複率飛秒光參產生器
論文名稱(外文):High repetition rate femtosecond optical parametric generator with CW laser injection seeding
指導教授:楊尚達
指導教授(外文):Shang-Da Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:27
中文關鍵詞:超快光學非線性光學光參產生
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用高功率(最大5 W)、高重複率(80 MHz)的摻鐿鎖模光纖雷射提供中心波長1030 nm、寬度560 fs的幫浦脈衝,另外注入波長1520�{1632 nm的連續波(continuous-wave, CW)雷射,利用週期性區域反轉鈮酸鋰(periodically poled lithium niobate, PPLN)滿足光參產生(optical parametric generation, OPG)所需之准相位匹配(quasi-phase match, QPM)條件,輸出以CW波長為中心的高重複率訊號脈衝。實驗上我們先在未注入CW雷射下量測OPG訊號頻譜與PPLN溫度、幫浦強度的關係,驗證系統的可靠性。接著探討注入CW雷射對OPG訊號特性的一系列影響,包括:訊號頻寬、非線性轉換效率、訊號中心波長、訊號同調性、輸出功率穩定性。文中亦將實驗結果與理論模擬及參考文獻做對照,並總結此技術的性能及限制。
摘要
第一章 緒論 1
第二章 原理與模擬分析 3
2-1 光參產生的原理 3
2-2 連續波注入之之飛秒光參產生 5
2-3 群速失配的限制 6
第三章 實驗結果與討論 13
3-1 實驗架構 13
3-2 量測結果分析 14
第四章 結論與未來展望 24
參考文獻 25
[1] C. K. Sun, Y. L. Huang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Ultrafast electron dynamics in GaN”, Physical Review B, 59, 13535-13538 (1999).

[2] H. P. Sardesai, C. C. Chang , A. M. Weiner , “A femtosecond code-division multiple-access communication systemtest bed”, J. Lightwave Technol., 16, 1953-1964 (1998).

[3] M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, A. Ben-Yakar, “Functional regeneration after laser axotomy”, Nature, 432, 822 (2004).

[4] Liejia Qian, Heyuan Zhu, Hang Luo, Peng Yuan, Tao Wang, “Quadratic Nonlinear Technologies for Femtosecond Lasers”, Korean Physical Society, 46, 233-241 (2005).

[5] 陳芙靜、陳仲宜、葉昭永,”材料加工界的明日之星-光纖雷射器”,機械工業技術與產業資訊專輯,286期,81-83 (2007)。

[6] B. Kohler, U. Bader, A. Nebel, J.-P. Meyn, R. Wallenstein. “A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding”, Appl. Phys. B, 75, 31–34 (2002).

[7] Dieter H. Jundt. , “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate”, Opt. Lett., 22, 1553-1555 (1997).

[8] G. M. Gale, M. Cavallari, F. Hache, “Femtosecond visible optical parametric oscillator”, J. Opt. Soc. Am. B, 15, 702-714 (1998).

[9] P. E. Britton, N. G. R. Broderick, D. J. Richardson, P. G. R. Smith, G. W. Ross, D. C. Hanna, “Wavelength-tunable high-power picosecond pulses from a fiber-pumped diode-seeded high-gain parametric amplifier”, Opt. Lett. , 23, 1588-1590 (1998).

[10] Giulio Cerullo and Sandro De Silvestri, “Ultrafast optical parametric amplifiers”, Review of Scientific Instruments, 74, 1-18 (2003).

[11] P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification”, IEEE J. Quantum Electron., 24, 398-403 (1988).

[12] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3”, Opt. Soc. Am. B, 12, 2102-2116 (1995).

[13] K. Kitamura, Y. Furukawa, S. Takekawa, T. Hatanaka, H. Ito, V. Gopalan, “Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices”, Ferroelectrics, 257, 235-243, (2001).


[14] T. A. Birks, D. Mogilevtsev, J. C. Knight, P. St.J. Russell, “Dispersion Compensation Using Single-Material Fibers”, Photonics Technology Letters, 11, 674-676 (1999).

[15] T Sudmeyer, J Aus der Au, R Paschotta, U Keller, P G R Smith, G W Ross, D C Hanna, “Novel ultrafast parametric systems: high repetition rate signal-pass OPG and fiber-feedback OPO”, Appl. Phys., 34, 2433-2439 (2001).

[16] Tao Wang, Heyuan Zhu, Liejia Qian, Guang Xu, Dianyuan Fan, “Tunable femtosecond optical parametric amplifier with weak CW seeding”, Optics Communications, 239, 397-401 (2004).

[17] Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3”, Appl. Phys., 78, 1970-1972 (2001).

[18] Masaru Nakamura, Shunji Takekawa, Kazuya Terabe, Kenji Kitamura, Takeshi Usami, Koichiro Nakamura, Hiromasa Ito, Yasunori Furukawa, “Near-Stoichiometric LiTaO3 for Bulk Quasi-Phase-Matched Devices”, Ferroelectrics, 273, 199-204 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top