1.Jan Haisma and G.A.C.M. Spierings, “Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry-Historical review in a broader scope and comparative outlook”, Materials Science and Engineering R37, pp. 1-60 (2000)
2.Roger G. Horn, “Surface Forces and Their Action in Ceramic Materials”, J. Am. Ceram. Soc. 73 (5), pp. 1117-1135 (1990)
3.Kai-Tak Wan, Douglas T. Smith and Brain R. Lawn, “Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres”, J. Am. Ceram. Soc. 75, pp. 667-676 (1992)
4.J.B. Lasky, S.R. Stiffler, F. R. White and J. R. Abernathey, IEDM Tech. Dig., 648 (IEEE, New York, 1985)
5.J.B. Lasky, “Wafer bonding for silicon-on-insulator technologies”, Appl. Phys. Lett. 48, pp. 78-80 (1986)
6.M. Shimbo, K. Furukawa, K. Furuda, K. Tanzawa, “Silicon-to-silicon direct bonding method”, J. Appl. Phys. 60(8), pp. 2987-2989 (1986)
7.Q.-T. Tong, X.-L. Xu, and H. Shen, “Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding”, Electronics Letters 26, pp. 697-699 (1990)
8.K.-Y. Ahn, R. Stengl, T. Y. Tan, U. Gösele, “Stability of interfacial oxide layers during silicon wafer bonding”, J. Appl. Phys. 65, pp. 561-563 (1989)
9.H. Takagi, R. Maeda, T. R. Chung, and T. Suga, “Low-temperature direct bonding of silicon and silicon dioxide by surface activation method”, Sensors and Actuators A 70, pp. 164-170 (1998)
10.James B. Kuo and Ker-Wei Su, “CMOS VLSI ENGINEERING: Silicon-on-insulator (SOI)”, Kluwer Academic Publishers, pp. 1-11 (1998).
11.Jean-Pierre Colinge, “Silicon-On-Insulator Technology :Materials to VLSI”, pp. 136-138(1997)
12.Martin A. Schmidt, “Wafer-to-Wafer Bonding for Microstructure Formation”, Proceedings of the IEEE 86(8), pp. 1575-1585 (1998)
13.T. Suni, K. Henttinen, A. Lipsanen. J. Dekker, H. Luoto, and M. Kulawski, “Wafer Scale Packaging of MEMS by Using
Plasma-Activated Wafer Bonding”, Journal of The Electrochemical Society, 153 (1) G78-G82 (2006)
14.Niclas Keskitalo, Stefan Tiensuu, Anders Hallen, “Characterization of hydrophobic bonded silicon wafers”, Nuclear Instruments and Methods in Physics Research B 186, pp. 66-70 (2002)
15.Q.-T. TONG and U. GÖSELE, “SEMICONDUCTOR WAFER BONDING : SCIENCE AND TECHNOLOGY”, John Wiley & Sons Inc. (1999)
16.T.R. Chung, L.Yang, N.Hosoda, B.Takagi, T.Suga, “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method”, Appl. Surf. Sci. 117-118, pp. 808-812 (1997)
17.T.R. Chung, L. Yang, N. Hosoda, T. Suga, “Room temperature GaAs-Si and InP-Si wafer direct bonding by the surface activated bonding method”, Nucl. Instrum. Methods Phys. Res. B 121, pp. 203-206 (1997)
18.Donato Pasquariello, Martin Camacho, Klas Hjort, László Dózsa, Béla Szentpáli, “Evaluation of InP-to-silicon heterobonding”, Materials Science and Engineering B 80, pp. 134-137 (2001)
19.V. Lehmann, K. Mitani, R, Stengl, T. Mii and U. Gösele, “Bubble-Free Wafer Bonding of GaAs and InP on Silicon in a Microcleanroom”, Jap. J. Appl. Phys. 28, pp. L2141-L2143 (1989)
20.F.A. Kish, F.M. Steranka, D.C. DeFevere, D.A. Vanderwater, K.G. Parker, C.P. Kuo, T.D. Osentowski, M.J. Peanasky, J.G. Yu, R.M. Fletcher, D.A. Steigerwald, M.G. Craford, V.M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes”, Appl. Phys. Lett. 64, pp. 2839-2841 (1994)
21.B.F. Levine, A.R. Hawkins, S. Hiu, B.J. Tseng, C.A. King, L.A. Gruezke, R. W. Johnson, D. R. Zolnowski, and J. E. Bowers, “20 GHz high performance planar Si/InGaAs p-i-n photodetector”, Appl. Phys. Lett. 70 (18), pp. 2449-2451 (1997)
22.J.H. Wang, M.S. Jin, V.H. Ozguz, S.H. Lee, “N-channel metal-on- semiconductor transistors fabricated in a silicon film bonded onto sapphire”, Appl. Phys. Lett. 64, pp. 724-726 (1994)
23.Akihiko Murai, Lee McCarthy, Umesh Mishra, Steven P. DenBaars, Carsten Kruse, Stephan Figge and Detlef Hommel, “Wafer Bonding of GaN and ZnSSe for Optoelectronic Applications”, Jap. J. Appl. Phys. 43, pp. L1275-L1277 (2004)
24.Yoshihiro Tomita, Masato Sugimoto, and Kazuo Eda, “Direct bonding of LiNbO3 single crystals for optical waveguides”, Appl. Phys. Lett. 66, 1484 (1995)
25.K. Eda, M. Sugimoto, Y. Tomita, “Direct heterobonding of lithium niobate onto lithium tantalate”, Appl. Phys. Lett. 66, pp. 827-828 (1995)
26.Martin Alexe, Gerhard Kästner, Dietrich Hesse, and Ulrich Gösele, “Ferroelectric-semiconductor heterostructures obtained by direct wafer bonding”, Appl. Phys. Lett. 70, pp. 3416-3418 (1997)
27.Q.-Y. Tong, R. Gafiteanu, U. M. Gösele, “Reversible Silicon Wafer Bonding for Surface Protection: Wafer-Enhanced Debonding”, J. Electrochem. Soc. 139, pp. L101-L102 (1992)
28.H. Takagi, K. Kikuchi, R. Maeda, T. R. Chung and T. Suga, “Surface activated bonding of silicon wafers at room temperature”, Appl. Phys. Lett. 68 (16), pp. 2222-2224 (1996)
29.Hideki Takagi, Ryutaro Maeda, Teak Ryong Chung, Naoe Hosoda and Tadatomo Suga, “Effect of Surface Roughness on Room-Temperature Wafer Bonding by Ar Beam Surface Activation”, Jpn. J. Appl. Phys. 37, pp. 4197-4293 (1998)
30.Hideki Takagi, Ryutaro Maeda, Naoe Hosoda and Tadatomo Suga, “Room-Temperature Bonding of Si Wafers to Pt Films on SiO2 or LiNbO3 Substrates Using Ar-Beam Surface Activation”, Jpn. J. Appl. Phys. 38, pp. L1559-L1561 (1999)
31.Hideki Takagi, Ryutaro Maeda, Tadatomo Suga, “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature”, Sensors and Actuators A 105, pp. 98- 102 (1997)
32.T. Suni, K. Henttinen, I. Suni and J. Mäkinen, “Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”, J. Electrochem. Soc. 149, pp. G348-G351 (2002)
33.Xuanxiong Zhang and Jean-Pierre Raskin, “Low-temperature Wafer Bonding - Optimal O2 Plasma Surface Pretreatment Time”, Electrochemical and Solid-State Letters 7(8), pp. G172-G174 (2004)
34.W.H. Zachariasen, Skr. Norske Vid-Ada, Oslo, Mat. Naturv. No.4 (1928)
35.B.T. Matthias and J.P. Remeika, “Ferroelectricity in the illmenite structure”, Phys. Rev., 76 (1949) 1886.
36.A.A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J. Am. Ceram. Soc., 48 (1965) 112.
37.S.C. Abrahams, J.M. Reddy and J.L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24℃”, J. Phys. Chem. Solids, 27 (1966) 997.
38.S.C. Abrahams, W.C. Hamilton and J.M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24℃”, J. Phys. Chem. Solids, 27 (1966) 1013.
39.S.C. Abrahams, H.J. Levinstein and J.M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24℃and 1200℃”, J. Phys. Chem. Solids, 27 (1966) 1019.
40.H.D. Megaw, “A note on the structure of lithium niobate”, Acta Crystallogr., A24 (1968) 583.
41.S.C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate”, Acta Crystallogr., B42 (1986) 61.
42.P.K. Gallagher, H.M. O’Bryan, “Characterization of LiNbO3 by dilatometry and DTA”, J. Am. Ceram. Soc., 68 (1985) 147.
43.A. Yariv and P. C. Yeh, “Optical Waves in Crystal”, John Wiley& Sons, Inc. 1984.
44.R.S. Weis and T.K. Gaylord, “ Lithium Niobate: Summary of Physical Properties and Crystal Structure ”, Appl. Phys. A 37, pp. 191-203 (1985)
45.馮端 主編,“固態物理學大辭典”,建宏出版社 (1998)
46.M.M.R. Howlader, Tadatomo Suga and Moon J. Kim, “A Novel Bonding Method for Ionic Wafers”, IEEE Transactions Advanced Packaging , Nov.2007 Page(s):598-604
47.賴欣怡,國立清華大學材料科學與工程研究所碩士論文,“晶圓直接接合製程物理及化學機制討論”,民國九十二年六月。