(34.237.124.210) 您好!臺灣時間:2021/02/25 19:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳眉君
論文名稱:原子層化學氣相沉積Al2O3高介電薄膜於銻化銦基板之界面清潔效應在MOSFET之應用
論文名稱(外文):Interfacial Cleaning Effects of ALD-Al2O3 on Passivating InSb in MOSFET Application
指導教授:吳泰伯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:103
中文關鍵詞:銻化銦氧化鋁界面清潔效應
外文關鍵詞:InSbAl2O3MOSFETInterfacial cleaning effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This thesis is on the preparation of Al2O3 thin films on InSb substrate by atomic layer deposition (ALD) using trimethyl-aluminum as the metal precursor. Two different surface pre-treatments are introduced before Al2O3 deposition: TMA/Ar pulse and chemical etching with CP4A. The cleaning effects of three pre-treatments to form well-defined interface are demonstrated. Chemical compounds retained at the interface after the different cleaning process are identified by XPS and an in-situ cleaning mechanism based on a ligand exchange reaction is proposed.
Then, the electrical properties of Al2O3 film deposited on InSb with different surface condition are studied. The J-Vg relation exhibits the good insulator property (~10-8 to 10-7 A/cm2 within ±4V) and the C-V characteristics at 77k reveal the satisfactory performance of the MOS structure. An improvement of the electrical properties from the cleaning treatments is clearly demonstrated. Rapid thermal annealing (RTA) before metallization was also carried out in this work, but the electrical properties become degraded which is attributed to the generation of interface states by the RTA treatment.
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Research Motivation 4
1.3 Research Objective 6
Chapter 2 Literature Review 7
2.1 Introduction of III-V semiconductor in MOSFET 7
2.2 High-k oxide Deposition 10
2.2.1 Physical Vapor Deposition 10
2.2.2 Chemical Vapor Deposition 12
2.2.3 Chemical Solution Deposition 15
2.3 Atomic Layer Deposition 15
2.3.1 ALD mechanism,,, 15
2.3.2 Strength and Shortcoming 20
2.4 Dielectric Properties 22
2.4.1 Dielectric constant 22
2.4.2 Dielectric strength 26
2.5 Leakage current Mechanism 29
2.6 Surface Passivation of InSb 36
2.6.1 Removal of InSb native oxides 36
2.6.2 Interfacial cleaning effect of ALD on III-V substrate 38
Chapter 3 Methods and Experiments 40
3.1 Experimental details and procedures 40
3.1.1 Process flow 40
3.1.2 Analysis and measurements 50
Chapter 4 Results and Discussion 53
4.1 The cleaning effect of different surface treatments 53
4.1.1 Surface morphology 53
4.1.2 Removal of native oxides 62
4.2 HRTEM image analysis after ALD-Al2O3 deposition 69
4.3 XPS spectra analysis after ALD-Al2O3 deposition 71
4.3.1 Interfacial cleaning effect 71
4.3.2 Ligand exchange reaction 76
4.4 Electrical properties analysis 80
4.4.1 J-Vg measurements 80
4.4.2 The leakage current mechanisms 81
4.4.3 C-Vg measurements 85
4.5 The influence of rapid thermal annealing of Al2O3/InSb 89
4.5.1 C-V characteristics of RTA process in different atmosphere 89
4.5.2 J-Vg relation of RTA process in different atmosphere 92
4.5.3 Electrical properties of RTO treatment with different time 94
Chapter 5 Conclusion 97
Reference 98
Moore G E 1965 Electronics 38 114-117
R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE
Electron Device Letters, 25, 408, (2004).
S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. McIntyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, IEEE Electron Device Letters, 25, 191 (2004).
Ashley, A. B. Dean, C. T. Elliott, R. Jefferies, F. Khaleque, and T. J. Phillips,
IEDM Technical Digest, 751, (1997)
http://www.intel.com/technology/mooreslaw/index.htm
R. Chou, INFOS 2005 presentation
T. Ashley, A. R. Barnes, L. Buckle, S. Datta, A. B. Dean, M. T. Emeny, M.
Fearn,D. G. Hayes, K. P. Hilton, R. Jefferies, et al., in 2004 7th International
Conference on Solid-State and Integrated Circuits Technology Proceedings, Vol.
3, 2253 (2005)
N. Yokoi, H. Andoh, and M. Takai, Appl. Phys. Lett., 64, 2578 (1994)
M. G. Kang, H. H. Park, and H. Kim, Appl. Phys. Lett., 80, 2499 (2002)
C. L. Chen, L. J. Mahoney, M. J. Manfra, F. W. Smith, D. H. Temme, and A. R.
Calawa, IEEE Electron Device Lett., 13, 335 (1992)
M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science,
283,1897 (1999)
H. Simchia, Sh. Bahreani, and M. H. Saani, Eur. Phys. J. Appl. Phys., 33, 1
(2006)
P. John, T. Miller, and T. C. Chiang, Phys. Rev. B, 39, 1730 (1989)
M. O. Schweitzer, F. M. Leibsle, T. S. Jones, C. F. McConville, and N. V.
Richardson, Semicond. Sci. Technol., 8, S342 (1993)
R. Tessler, R. Akhvlediani, R. Edrei, O. Klin, S. Greenberg, E. Weiss, C. Saguy,
and A. Hoffman, Appl. Phys. Lett., 88, 031918 (2006)
A. Rastogi and K. V. Reddy, Thin Solid Films, 270, 616 (1995)
J. D. Langan and C. R. Viswanathan, J. Vac. Sci. Technol., 16, 1474 _1979_
F. Khaleque, Electron. Lett., 31, 500 (1995)
B. D. Liu and S. C. Lee, Appl. Phys. Lett., 63, 3622 (1993)
H. C. Lin, P. D. Ye, and G. D. Wilk, Appl. Phys. Lett., 87, 182904 (2005)
Y. Xuan, H. C. Lin, and P. D. Ye, ECS Trans., 3 (3) , 59 (2006)
M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu,
and M. Hong, Appl. Phys. Lett., 87, 252104 (2005)
C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T.-D. Lin, T. B. Wu, J. Kuo,
and M. Hong, Appl. Phys. Lett., 89, 242911 (2006)
P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H. J. L. Gossmann, M. Hong, K. Ng, and
J. Bude, Appl. Phys. Lett., 84, 434 (2004)
F. Maria, F. Micea, D. T. Jayne, M. Goradia, and C. Goradia, Surf. Interface
Anal., 15, 641 (1990)
Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao and K. Y. Cheng, Appl. Phys. Lett. 92, 072901 (2008)
C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M.
Milojevic, B. Lee, 2 F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim and R.
M. Wallace, Appl. Phys. Lett, 92, 071901 (2008)
W. Kern, D.A. Poutinen, RCA Rev. 31, 187 (1970)
W. Kern, J. electrochem. Soc, 137, 1887 (1990)
B. D. Luft, L. B. Khusid, M. L. Yassen, Yu. S. Milyavskii, Inorg. Mater. 20,
1087 (1984)
A. J. Bosch, R. G. van Welzonis, O. F. Z. Sehanen, J. Appl. Phys. 58, 3434
(1985)
M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y.
Hou, and V. J. Gratello: J. Vac. Sci Technol. B 14, 2297 (1996)
M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent: Science, 283, 1987 (1999)
C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, J. Kwo, Appl. Phys. Lett , 89, 242911 (2006)
http://www.mems-exchange.org/MEMS/processes/deposition.html
莊達人, “VLSI製造技術” 高立圖書
http://www.mems-exchange.org/MEMS/processes/deposition.html
許家旺, “In-situ 電漿表面處理對原子層化學氣相沉積Al2O3、HfO2高介電薄
膜應用在奈米尺度世代DRAM影響之研究”, 清華大學碩士論文 (2006)
Szu-Wei Huang and Jenn-Gwo Hwu, IEEE Trans. Elec. Dev. 50, 1658 (2003)
James D. Plummer, Michael K. Deal, Peter B. Griffin, “Silicon VLSI
Technology Fundamentals, Practice and Modeling”, published by Prentice Hall
Electronics and VLSI Series
Toshiro Maruyama, and Susumu Arai, Appl. Phys. Lett. 60, 322 (1992)
J. S. Kim, H. A. Marzouk, P. J. Reucroft, J. D. Roberision, and C. E. Hamrin, Jr.,
Appl. Phys. Lett. 62, 681 (1993)
H. O. Pierson, “Handbook of Chemical Vapor Deposition Principles, Technology
and Application”, Noyes Publications U.S.A., (1995)
李清楠, “下電極材料對原子層化學氣相沉積Al2O3高介電薄膜櫻用在奈米尺
度世代DRAM影響之研究”, 清華大學, 碩士論文 (2005)
G. S. Higashi, and C. G. Fleming, Appl. Phys. Lett. 55, 1963 (1989)
Yuniarto Widjaja, Charles B. Musgrave, Appl. Phys. Lett. 80, 3304 (2002)
Martin M. Frank, Yves J. Chabal and Glen D. Wilk, Appl. Phys. Lett. 82, 4758
(2003)
Suvi Haukka, Eeva-Liisa, and Toumo Suntola, Appl. Surf. Sci. 82/83, 548-552
(1994)
http://www.cambridgenanotech.com/index.php
T. Hori, Gate dielectrics and MOS ULSIs: principle, technologies, and
applications, Springer, Berlin, p8, 45 (1997)
W. E. Spicer, P. W. Chye, P. R. Skeath, C. Y. Su, and I. Landau, J. Vac. Sci.
Technol. 16, 1422 (1979)
S. Arabasz, E. Bergignat, G. Hollinger and J. Szuber, Vacuum. 80, 888 (2006)
V. N. Bessolov, E. V. Konenkova and M. V. Lebedev, J. Vac. Sci. Technol. B 14,
2761 (1996)
Y. Dong, X. M. Ding, X. Y. Hou, Y. Li and X. B. Li, Appl. Phys. Lett. 77, 3839
(2000)
W. K. Liu, W. T. Yuen, R. A. Stradling, J. Vac. Sci. Technol. B, 13 (4), 1529
(1995)
R. P. Vasquez, B. F. Lewis, F. J. Grunthaner, J. Appl. Phys. 54 (3), 1365 (1983)
W. K. Liu, M. B. Santos, J. Vac. Sci. Technol. B. 14(2), 647 (1996)
T. S. Jones, M. Q. Ding, N. V. Richardson, C. F. McConville, Sur. Sci. 247, 1
(1991)
Z. C. Feng, H. Gong, W. J. Choyke, N. J. Doyle, R. F. C. Farrow, J. Mater. Sci.:
Mater. Electron. 7, 23 (1996)
In2O3 will decompose into nonvolatile InO if heated at temperatures above 500
°C under vacuum,’’ see Treatise on Iorganic Chemistry by H.Remy (Elsevier, New York, 1956), Vol. 1.
F. D. Auret, J. Electrochem. Soc. 131, 2115 (1984)
J. C. Bean, G. E. Becker, P. M. Petroff, and T. E. Seidel, J. Appl. Phys. 48, 907
(1977)
Y. D. Zheng, Y. H. Chang, B. D. McCombe, R. F. C. Farrow, T. Temofomte, and
F. A. Shirland, Appl. Phys. Lett. 49, 1187 (1986)
L. Haworth, J. Lu, D. I. Westwood, J. E. MacDonald, Appl. Sur. Sci. 166,
253-258 (2000)
H. Simchi, Sh. Bahreani, and M. H. Saani, Eur. Phys. J. Appl. Phys. 33, 1-4
(2006)
Faur M., Faur M., Jayne D.T., Goradia M., Goradia C. Surf. Interface Anal. 15,
641 (1990)
Izquierdo R., Sacher E., Yelon A. Appl. Surf. Sci. 40, 175 (1989)
Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong,J. Kwo, T.
S. Lay, C. C. Liao and K. Y. Cheng, Appl. Phys. Lett. 92, 072901 (2008)
D. G. Hendershot, J. C. Pazik, and A. D. Berry, Chem. Mater. 4, 833 (1992)
Y. Bu and M. C. Lin, A. D. Berry and D. G. Hendershot, J. Vac. Sci. Technol. A
13, 230 (1995)
J. D. Langan and C. R. Viswanathan, J. Vac. Sci. Technol., 16, 1474(1979)
F. Khaleque, Electron. Lett. 31, 500 (1995)
B. D. Liu and S. C. Lee, Appl. Phys. Lett., 63,3622 (1993)
B. Ullrich, F. Kuchar, R. Meisels, F. Olcaytug, and A. Jachimowicz, Thin Solid
Films, 168, 157 (1989)
M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J.Grazul, and D. A. Muller, Appl. Phys. Lett., 86, 152904 (2005)
N. L. Cohen, R. E. Paulsen, and M. H. White, IEEE Trans. Electron Devices, 42,
2004 (1995).
A. Etchells and C. W. Fischer, J. Appl. Phys. 47, 4605 (1976)
C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M.
Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, J. Kim, and R. M. Wallace,
Appl. Phys. Lett. 91, 163512 (2007)
D. Shahrjerdi, D. I. Garcia-Gutierrez, T. Akyol, S. R. Bank, E. Tutuc, J. C. Lee,
and S. K. Banerjee, Appl. Phys. Lett. 91, 193503 (2007)
H. D. Barber and E. L. Heasell, J. Appl. Phys. 36, 176(1965)
Donghun Choi, James S. Harris, Maitri Warusawithana and Darrell G. Schlom,
Appl. Phys. Lett. 90, 243505 (2007)
Chao-Ching Cheng, Chao-Hsin Chien, Guang-Li Luo, Chun-Hui Yang,
Ching-Chih Chang, Chun-Yen Chang, Chi-Chung Kei, Chien-Nan Hsiao, and
Tsong-Pyng Perng, J. Appl. Phys. 103, 074102 (2008)
C. W. Wilmsen, J. Vac. Sci. Technol., 13 (1976) 64
James C. Kim, IEEE. Transactions on parts, hybrids and packaging, Vol.
PHP-10, No.4, December (1974)
鄭智元, “銻化銦薄膜之電子特性與微觀組織之研究”, 中山大學, 碩士論文
(2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 高介電係數材料氧化鉿與氧化鏑在金氧半電容器之物性和電性分析
2. 以原子層沈積法(ALD)製作高品質透明薄膜電晶體與特性研究
3. Interfacial Electrical Properties of In-situ ALD-HfAlO/GaAs MOS Capacitor
4. 以原子層沉積及分子束磊晶成長之高介電常數氧化物為閘極介電層之高效能氮化鎵金氧半場效電晶體之製作和研究
5. 藉由ALD成長在m面藍寶石基板之m面氧化鋅結構與特性
6. 利用原子層化學氣相法在TiO2電極上沉積Al2O3覆層以改進染料敏化太陽能電池之光電效能
7. ALD低溫成長ZnO磊晶薄膜及其結構與光學特性研究
8. 原子層化學氣相沉積之高介電閘極絕緣層於矽及銻化銦基板之研究
9. 原子層沉積高介電係數氧化鋁閘極介電層之鍺金氧半場效電晶體電物性研究
10. 以不同後沉積退火處理之原子層沉積HfO2閘極介質層C-V,I-V及應力作用後之行為
11. 探討利用原子層化學氣相沉積法鍍製Al2O3、HfO2之高介電結構薄膜,應用在奈米尺度世代DRAM影響之電性研究
12. 邏輯製程相容之新型雙閘極一次性寫入記憶體的開發與研究
13. 藉由氮化鋁層間鈍化層之插入改善氮化矽氮化鋁鎵/氮化鎵金屬絕緣半導體高電子遷移率電晶體之漏電流及電流潰散效應
14. 原位原子層沉積成長氧化鋁/砷化鎵金氧半電容之介面電性與氧化層微縮特性研究
15. 數學島:設計國小知識地圖遊戲支援學生學習
 
系統版面圖檔 系統版面圖檔