(3.236.222.124) 您好!臺灣時間:2021/05/11 09:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇育群
研究生(外文):Su, Yu-Chun
論文名稱:利用熱蒸鍍法合成氧化釩及摻雜鋁之氧化釩一維奈米結構與其性質分析
論文名稱(外文):Formation, Characterization and properties of un-doped and Al-doped vanadium oxide 1-D nanostructures by thermal evaporation
指導教授:施漢章葉均蔚
指導教授(外文):Shih, Han C.Yeh, Jien W.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:113
中文關鍵詞:熱蒸鍍氧化釩
外文關鍵詞:thermal evaporationvanadium oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用五氧化二釩及鋁粉末在水平爐管中作為蒸鍍源,成功的利用熱蒸鍍法合成出未摻雜及摻雜鋁的五氧化二釩一維奈米結構,從場發射掃描電子顯微鏡(FESEM)觀察到我們合成出的是奈米棒結構,其寬度大約介於50~100nm而長度大約在數個微米,再利用高解析穿透式電子顯微鏡(HRTEM)以及電子選區繞射(SAED)圖形確認其為五氧化二釩的單晶結構,並定義出晶面方向及成長方向為[020]。除此之外,更利用X光繞射儀、X光電子能譜術(XPS)、EDS、微拉曼光譜,對其結構與成分甚至是化學態做更進一步的分析。
另外,我們分別在光激發光譜(PL)、電壓電流曲線和氣體感測上來比較奈米棒在摻雜鋁之後的變化,摻雜鋁之後的五氧化二凡奈米棒的發光位置從650nm藍移到610nm,並且因為鋁的摻雜造成單根奈米棒電阻率的上升,在酒精感測的敏感度也因為鋁的摻雜產生了變化。
In this work, pure V2O5 and Al-doped V2O5 1-D nanostructures have been synthesized by thermal evaporation. The nanostructures were successfully synthesized with horizontal tube furnace by using vanadium pentoxide and aluminum powder. The morphology of nanostructures was analyzed by field emission scanning electron microscope (FESEM). It is shown that the appearance of nanostructures is nanorods with diameter ranging between 50 and 200 nm and with lengths extending up to several microns. High resolution transmission electron microscopy (HRTEM) micrographs and selection area electron diffraction (SAED) patterns of V2O5 nanorods clearly show that they are single-crystalline with a growth direction of [020]. The structures and component were characterized by means of X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and Micro-Raman Spectroscopy.
The properties of Al-doped and un-doped V2O5 nanorods were investigated by Photoluminescence (PL), I-V curve and gas sensor. The pure V2O5 nanorods gave emission~650 nm but the emission of Al-doped V2O5 nanorods blue shifted to 610nm. The resistivity of the single nanorods increasing is result of aluminum doping. Furthermore,aluminum addition adjusted the sensitivity of nanorods.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章序論 1
第一章參考資料 3
第二章文獻回顧 5
2.1奈米科技的發展 5
2.2一維奈米材料的簡介 15
2.3一維奈米材料的合成方法 17
2.4一維奈米材料成長機制 21
2.4-1氣-固(Vapor-Solid, VS)機制 21
2.4-2氣-液-固(Vapor-Liquid-Solid, VLS) 21
2.4-3溶液-液-固(Solution-Liquid-Solid, SLS) 23
2.4-4 氧化物輔助成長(Oxide-assisted growth)機制 24
2.5氧化釩的性質與應用 25
第二章參考資料 33
第三章實驗方法與儀器介紹 39
3.1實驗方法 39
3.2合成二氧化釩奈米棒 41
3.3合成五氧化二釩奈米線 42
3.4合成摻雜鋁五氧化二釩奈米線 43
3.5分析儀器 45
3.5-1場發射掃描式電子顯微鏡(FESEM) 45
3.5-2場發射穿透式電子顯微鏡(HR-TEM) 46
3.5-3 X光繞射儀 47
3.5-4 X光光電子能譜術(XPS, x-ray photoelectron spectroscopy) 48
3.5-5微拉曼光譜分析(Micro-Raman Spectroscopy) 49
3.5-6光致發光(Photoluminescence) 50
3.5-7多探針奈米電性量測系統(Multi-probe Nano-electronics Measurement System) 50
第四章結果與討論 52
4.1二氧化釩奈米棒的合成 52
4.1-1表面形貌分析 52
4.1-2穿透式電子顯微鏡分析 57
4.1-3成分分析 62
4.2五氧化二釩奈米棒的合成 64
4.2-1表面形貌分析 64
4.2-2穿透式電子顯微鏡分析 67
4.2-3成分分析 71
4.2-4微拉曼光譜分析(Micro-Raman Spectroscopy) 75
4.3摻雜鋁之五氧化二釩奈米棒的合成 78
4.3-1表面形貌分析 78
4.3-2穿透式電子顯微鏡分析 80
4.3-3成分分析 84
4.3-4微拉曼光譜分析(Micro-Raman Spectroscopy) 89
4.4性質分析與比較 91
4.4-1光子激發光譜(Photoluminescence) 91
4.4-2 單根奈米棒電性量測 96
4.5簡易氣體感測 100
4.6五氧化二釩的成長 106
第四章參考資料 109
第五章結論 111
第六章未來展望 113
第一章參考資料
[1]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 1991, Vol. 354, 56
[2]王崇人, 科學發展 2002年6月, 354期
[3]http://scienceworld.wolfram.com/physics/Tunneling.html
[4]Avouris, Phaedon, Lyo, In-Whan, Hasegawa, Yukio., “Probing electrical transport, electron interference, and quantum size effects at surfaces with STM/STS”, IBM Journal of Research & Development, 00188646, Nov95, Vol. 39, Issue 6
[5]C.M. Lampert, “Smart switchable glazing for solar energy
and daylight control”, Sol. Energy Mater. Sol. Cells 52, 207-221, (1998)
[6]J. Liu , X. Wang , Q. Peng , Y. Li “Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials”, Adv Mater, 17, NO.6, (2005)
[7]Samuel T. Lutta, Arthur Dobley, Katana Ngala, Shoufeng Yang, Peter Y. Zavalij, and M. Stanley Whittingham “Vanadium Oxide Nanotubes: Characterization and Electrochemical Behavior” Mater. Res. Soc. Symp. 703, V8.3, (2002)
[8]Michael E. Spahr, Petra Stoschitzki-Bitterli, Reinhard Nesper, Otto Haas, and Petr Novák,“Vanadium Oxide NanotubesA New Nanostructured Redox-Active Material for the Electrochemical Insertion of Lithium” Journal of The Electrochemical Society, 146 (8) 2780-2783 (1999)
[9]Mi Ra Min, Jae Hoon Kim and Eun Kyu Kim, Yong Kwan Kim and Jeong Sook Ha, Kyu Tae Kim“, Electrical Properties of V2O5 (Vanadium Pentoxide) Nanowires”, Journal of the Korean Physical Society, Vol. 49, No. 3, September 2006
[10]Jörg Muster, Gyu Tae Kim, Vojislav Krstic, Jin Gyu Park, Yung Woo Park, Siegmar Roth, and Marko Burghard, “Electrical Transport Through Individual Vanadium Pentoxide Nanowires”, Adv. Mater. 12, No. 6, (2000)
[11]C. Díaz-Guerraa and J. Piqueras, “Structural and cathodoluminescence assessment of V2O5 nanowires and nanotips grown by thermal deposition”, Journal of Applied Physics 102, 084307(2007)
[12]Jitae Park, In Hwan Oh, Eunmo Lee, Kyu Won Lee, and Cheol Eui Lee “Structure and magnetism in VO2 nanorods”, Applied Physics Letters 91, 153112 (2007)
第二章參考資料

[1]http://nano.nsc.gov.tw/main/1/1_03.html
[2]http://science.ylps.tp.edu.tw/
[3]http://nano.nstm.gov.tw/05resourceful/resourceful03.asp
[4]http://www.phys.sinica.edu.tw/~nano/stm.htm
[5http://www.nisenet.org/publicbeta/articles/seeing_atoms/index.html
[6]李錫隆,一九九六年諾貝爾化學獎的故事。
[7]http://www.almaden.ibm.com/vis/stm/atomo.html
[8]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, 56, (1991)
[9]http://www.nanowerk.com/news/newsid=2370.php
[10]http://www.ntrc.itri.org.tw/dict/content.jsp?newsid=217
[11]Kim and Lieber “Nanotube Nanotweezers”, Science 286 (5447): 2148
[12]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”,
Appl. Phys. Lett. (1999).
[13http://www.nss.org/resources/library/spaceelevator/index.htm# smitherman
[14]http://twbusiness.nat.gov.tw/asp/industry7.asp
[15]http://www.nano.com.tw/Nano_Intro/
[16]Y. D. Kim, W. Choi, H. Wakimoto, S. Usami, H. Tomokage, T. Ando, “Direct observation of electron emission site on boron-doped polycrystalline diamond thin films using an ultra-high-vacuum scanning tunneling microscope ”, Appl. Phys. Lett.75, 3129, (1999)
[17]Banerjee D, Jo SH, Ren ZF “Enhanced field emission of ZnO nanowires”, Adv. Mater.16, NO.22, (2004)
[18]Zhengwei Pan, Hau-Ling Lai, Frederick C. K. Au, Xioafeng Duan, Weiya Zhou, Wensheng Shi, Ning Wang, Chun-Sing Lee, Ning-Biu Wong, Shuit-Tong Lee, and Sishen Xie, “Oriented silicon carbide nanowires: Synthesis and field emission properties”, Adv. Mater. 12, NO.16, 4, (2000)
[19]Wan Q, Wang TH, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application”, Chem. Commun. 30, 3841 (2005)
[20]Wang JX, Sun XW, Huang H, et al. “A two-step hydrothermally grown ZnO microtube array for CO gas sensing” Applied Physics A-Materials Science & Processing, 88, 4, pp. 611-615
[21]Huang XJ, Choi YK, “Chemical sensors based on nanostructured materials”, Sens. Actuators B: Chem. pp. 659-671,(2007)
[22http://www.mtmi.vu.lt/pfk/funkc_dariniai/nanostructures/superlattice.htm
[23]S. Banerjee, A. Dan, D. Chakravorty, “Synthesis of conducting nanowires”, J. Mater. Sci. 37, 4261 – 4271, (2002)
[24]Zu Rong Dai, Zheng Wei Pan, and Zhong L. “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. ,13, No. 1, 9,(2003)
[25]曹�琤� 連大成 物理雙月刊23卷4期(2001年8月)
[26]Y.Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gate, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures Synthesis Characterization and Applications”, Adv Mater. , 15, NO. 5, 353,(2003)
[27]X.B. Zeng, Y.Y. Xu, S.B. Zhang, Z.H. Hu, H.W. Diao, Y.Q. Wang, G.L. Kong, X.B. Liao “Silicon nanowires grown on a pre-annealed Si substrate”, Journal of Crystal Growth 247, pp.13-16, (2003)
[28]L. H. Chan, K. H. Hong, S. H. Lai, X. W. Liu and H. C. Shih,“The formation and characterization of palladium nanowires in growing carbon nanotubes using microwave plasma-enhanced chemical vapor deposition”, Thin solid Film, 423, pp. 27-32, (2003)
[29]Jyh-Ming Ting and Ruo-Mei Liu, “Carbon nanowires with new microstructures”, Carbon 41, pp. 601-603, (2003)
[30]http://engr.nmsu.edu/~jcecil/current-initiatives/NanoTechnology_Research/SCREAM.htm
[31]Hu HM, Huang XH, Deng CH, et al. “Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale”, Materials Chemistry and Physics 106, pp.58-62, (2007)
[32]Zhu DL, Zhu H, Zhang YH, “Hydrothermal synthesis of La0.5Ba0.5MnO3 nanowires”, Appl. Phys. Lett. 80, 1634 (2002)
[33]Xu G, Ren ZH, Du PY, Weng WJ, Shen G, Han GR, “Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires”, Adv. Mater. 17, NO.7, (2005)
[34]R.S. Wagner, W.C. Ellis , “Vapor-Solid-Growth Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4, 89, (1964)
[35]B. Lewis, in Crystal Growth, Pergamon, Oxford, pp.23-63 (1980)
[36]Chen YQ, Jiang J, Wang B, Hou JG “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth”, J. Phys. D: Appl. Phys. 37, 3319
[37]Kolb FM, Hofmeister H, Scholz R, et al. “Analysis of silicon nanowires grown by combining SiO evaporation with the VLS mechanism”, J. Electrochem. Soc. 151, G472 (2004).
[38]Gao PX, Wang ZL “Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process”, J Phys Chem B 108:7534-7437
[39]Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro,“Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science 1995, 270, No. 5243, 1791
[40]Yiying Wu, Haoquan Yan, Michael Huang, Benjamin Messer,
Jae Hee Song, and Peidong Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties”, Chem. Eur. J. 8, No. 6, (2002)
[41]R. Q. Zhang, Y. Lifshitz, S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater. 2003, 15, NO.7-8
[42]W. Bruckner, H. Oppermann, W. Reichelt, J. I. Terukow, F. A. Tschudnowski, E. Wolf, Vanadiumoxide, Akademie, Berlin, 1983
[43]J. Haber, M. Witko, R. Tokarz, “Vanadium pentoxide Ⅰ. Structures and properties”, Appl. Cata. A: General 157,pp.3-22, (1997)
[44]Binary Alloy Phase Diagrams, 2nd ed. pp.2930-2931, Vol.3
[45]J. Livage, Chem. Mater. 3 “Vanadium Pentoxide Gels”, pp.578-593 (1991)
[46]N. Pinna, U. Wild, J. Urban, R. Schlogl, “Divanadium Pentoxide Nanorods”, Adv. Mater. 15 329-331, (2003)
[47]Keng-Che Cheng, Fu-Rong Chen, Ji-Jung Kai, “V2O5 nanowires as a functional material for electrochromic device”, Solar Energy Materials & Solar Cells 90, pp.1156–1165, (2006)
[48]Hans-Joachim Muhr, Frank Krumeich, Urs P. Schönholzer,
Fabian Bieri, Markus Niederberger, Ludwig J. Gauckler, and
Reinhard Nesper, “Vanadium Oxide Nanotubes-A New
Flexible Vanadate Nanophase”, Adv. Mater. 12, NO.3, (2000)
[49]H.R. Aghabozorg1,, R. Mousavi2, S. Asckari3 and H. Aghabozorg2, “Effects of synthesis methods of vanadium oxide nanotubes on the inter layer distances”, Journal of Nanoparticle Research, 9:497-500, (2007)
[50]X. Liu, C. Täschner, A. Leonhardt, M. H. Rümmeli, T. Pichler, T. Gemming, B. Büchner, and M. Knupfer, “Structural, optical, and electronic properties of vanadium oxide nanotubes”, Physical Review B 72, 115407 (2005)
[51]Jitae Park, In Hwan Oh, Eunmo Lee, Kyu Won Lee, and Cheol Eui Lee, “Structure and magnetism in VO2 nanorods”, Applied Physics Letters 91, 153112 (2007)
[52]C. O’Dwyer, D. Navas, V. Lavayen,, E. Benavente, M. A. Santa Ana, G. Gonza´lez, S. B. Newcomb,and C. M. Sotomayor Torres, “Nano-Urchin: The Formation and Structure of High-Density Spherical Clusters of Vanadium Oxide Nanotubes”, Chem. Mater. 18, 3016-3022,(2006)
第四章參考資料

[1]K. H. Jackson, ASM, Cleveland, p.p.174-186, (1958)
[2]B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd ed. pp.635, (2001)
[3]M. Demeter, M. Neumann, W. Reichelt, “Mixed-valence vanadium oxides studied by XPS”, Surface Science 454-456, 41-44, (2000)
[4]C. O’Dwyer, V. Lavayen, S. B. Newcomb, M. A. Santa Ana, E. Benavente, G. González, and C. M. Sotomayor Torresa, “Vanadate Conformation Variations in Vanadium Pentoxide Nanostructures”, J. Electro. Soc. 154 (8) K29-K35 (2007)
[5]M. Benmoussa, E. Ibnouelghazi, A. Bennouna, E.L. Ameziane,“Structural, electrical and optical properties of sputtered vanadium pentoxide thin films”, Thin Solid Films 265, 22-28, (1995)
[6]Franklin D. Hardcastlet and Israel E. Wachs, “Determlnation of Vanadium-Oxygen Bond Distances and Bond Orders by Raman Spectroscopy”, J. Phys. Chem. Vol. 95, No. 13, (1991)
[7]S. Nishio and M. Kakihana, “Evidence for Visible Light Photochromism of V2O5”Chem. Mater. 14, 3730 (2002).
[8]Nilima V. Hullavarad, Shiva S. Hullavarad, and Pramod C. Karulkar,“Electrical and Optical Properties of V2O5 Micro-NanoStructures Grown by Direct Vapor Phase Deposition Method”, Journal of The Electrochemical Society, 155 (4) K84-K89 (2008)
[9]V. Eyert and K.-H. Ho¨ck, “Electronic structure of V2O5: Role of octahedral deformations”, Phys. Rev. B Volume 57, NO. 20
[10]S. Atzkern, S. V. Borisenko, M. Knupfer, M. S. Golden, and J. Fink, “Valence-band excitations in V2O5”, Physical Review B Volume 61, NO. 19
[11]B. E.Sernelius, K.–F. Berrgeren et al. “Band-gap tailoring of ZnO by means of heavy Al doping”, Physical Review B Volume 37, NO. 17
[12]Jörg Muster et al.“Electrical Transport Through Individual Vanadium Pentoxide Nanowires” Adv. Mater. 12, No. 6,(2000)
[13]Junfeng Liu, Xun Wang, Qing Peng, Yadong Li, “Preparation and gas sensing properties of vanadium oxide nanobelts coated with semiconductor oxides”, Sensors and Actuators B 115, 481-487, (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔