跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/07 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宏達
研究生(外文):Honda Lin
論文名稱:摻雜鈦對於類鑽碳膜之性質影響
論文名稱(外文):Effect of Ti incorporation on the properties of DLC film
指導教授:施漢章彭宗平彭宗平引用關係
指導教授(外文):Han C. ShihTsong P. Perng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:107
中文關鍵詞:過濾式陰極電弧系統金屬蒸氣真空弧類鑽碳膜
外文關鍵詞:FCVAMeVVADLC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本實驗中我們以兩種方式合成摻雜鈦之類鑽碳膜(Ti-doped DLC),一是利用過濾式陰極電漿沉積系統合成類鑽碳膜,藉由金屬蒸氣真空弧系統(Metal vapor vacuum arc,簡稱MeVVA)進行鈦離子佈植;二是利用過濾式陰極電弧系統以鍍鈦膜(~5�慆)之碳靶合成。由於MeVVA的佈植過程會破壞薄膜結構,因此嘗試藉由退火處理使薄膜結構回復。由X光電子能譜(XPS)觀察發現利用MeVVA佈植之C 1s core-level 往低能量偏移現象。歐傑電子能譜儀(AES)顯示兩種製程所得之薄膜在縱深分佈不同。拉曼光譜分析(Raman spectra)發現兩種佈植方式,ID/IG都會因為摻雜鈦而增加。低掠角的X光繞射結果顯示兩種製程以及退火處理後之Ti-doped DLC都仍是屬於非晶質結構。穿透式電子顯微鏡(TEM)結果觀察到MeVVA所得薄膜中析出碳化鈦奈米晶叢,過濾式陰極電漿系統所得薄膜則有多層結構(multi-layer)。原子力顯微鏡(AFM)結果顯示兩種佈植方式都可以獲得平坦表面結構。四點碳針顯示摻雜鈦能提昇載子濃度降低電阻率,退火處理使結構石墨化也能達到降低電阻率之效果。最後利用奈米壓痕儀發現硬度可藉由單一製程摻雜鈦獲得提昇。
In this work, Ti-doped diamond like carbon thin films (DLC) were synthesized by two methods. In the first method, Ti was incorporated into DLC by a metal vapor vacuum arc system (MeVVA). In the second method, Ti-doped DLC was synthesized by filtered a cathodic vacuum arc plasma system (FCVA). Since the structure of Ti-doped DLC was destroyed by high-energy ion implantation, annealing was used to recover the structure of Ti-doped DLC. The XPS analysis demonstrates that C 1s core-level of Ti-doped DLC incorporated by MeVVA shifts towards lower binding energy. The auger electronic spectra show that the depth-profiles in these methods are different. From the TEM observation, nano-crystalline clusters appear in Ti-doped DLC incorporated by MeVVA, and a multi-layer structure appears in the Ti-doped DLC synthesized by FCVA. The Raman spectra show that ID/IG ratio increase with the Ti content. The rising ratio implies that the sp3 bonds increase with Ti content. The extremely low surface roughness and improved electrical conductivity show that Ti-doped DLC has practical applications.
目錄
摘要 I
ABSTRACT II
致謝 III
目錄 V
圖目錄 VIII
表目錄 X
第一章 文獻回顧 1
1.1 碳與類鑽碳膜 1
1.2 摻雜金屬之類鑽碳膜 3
1.3 鈦與碳化鈦 4
第二章 製程系統簡介 6
2.1 過濾式陰極電弧電漿系統 6
2.1.1 陰極電弧沉積原理 6
2.1.2 真空電弧 (Vacuum Arc) 8
2.1.3 電弧源 (Arc Source) 8
2.1.4 靶座外加磁場 9
2.1.5大粒子過濾裝置 (Macroparticles Filter) 10
2.2 鍍膜成長機制 12
2.3 電漿與壓力關係 14
2.4 輝光放電 15
2.5 大粒子 (MACROPARTICLES) 17
2.6離子佈植 17
2.6.1 能量傳遞機制 17
2.6.2 強化機制 18
2.6.3 金屬蒸氣真空弧系統 (Metal Vapor Vacuum Arc) 19
第三章 實驗步驟流程與儀器介紹 20
3.1 試片準備: 20
3.2 試片清潔: 20
3.3合成非晶質碳膜---過濾式陰極電弧電漿沉積系統 20
3.4 離子佈植 25
3.5 退火處理 26
3.6 靶材改質 26
3.7 實驗流程 27
3.8 實驗參數 30
3.9分析儀器及量測原理 31
3.9.1 化學分析電子儀 (ESCA) 31
3.9.2 歐傑電子能譜儀 (AES) 33
3.9.3 拉曼光譜分析 (Raman Spectroscopy) 34
3.9.4 X光繞射 (XRD) 36
3.9.5 穿透式電子顯微鏡 (TEM) 38
3.9.6 原子力顯微鏡 (AFM) 39
3.9.7 四點探針量測 42
3.9.8 機械性質量測 44
第四章結果與討論 47
4.1 利用金屬蒸氣真空弧系統佈植鈦 47
4.1.1 X光光電子能譜 (XPS) 47
4.1.2 奈米歐傑電子能譜 (Nano-AES) 51
4.1.3 拉曼光譜特性分析 (Raman ) 52
4.1.4 低掠角X光繞射分析 (glancing incident X-ray diffraction characterization) 60
4.1.5 穿透式電子顯微鏡 (TEM) 61
4.1.6 原子力顯微鏡 (AFM) 65
4.1.7 四點探針量測 (Four-Point ) 67
4.1.8 奈米壓痕儀 (Nano-indenter) 68
4.1.9 小結 69
4.2 退火處理摻雜鈦之類鑽碳膜 70
4.2.1拉曼光譜特性分析 (Raman ) 70
4.2.2 低掠角X光繞射分析 (glancing incident X-ray diffraction) 76
4.2.3 原子力顯微鏡 (AFM) 76
4.2.4 四點探針量測 (Four-Point) 78
4.2.5 奈米壓痕儀 (Nano-indenter) 80
4.2.6 小結 82
4.3. 以過濾式陰極電弧沉積系統製備摻雜鈦之類鑽碳膜 83
4.3.1 X光光電子能譜 (XPS) 83
4.3.2 奈米歐傑電子能譜 (Nano-AES) 84
4.3.3 拉曼光譜特性分析 (Raman Spectroscopy) 86
4.3.4低掠角X光繞射分析 (glancing incident X-ray diffraction characterization) 88
4.3.5穿透式電子顯微鏡 (TEM) 88
4.3.6原子力顯微鏡 (AFM) 92
4.3.7四點探針量測 (Four-Point) 95
4.3.8 奈米壓痕儀 (Nano-indenter) 96
4.3.9 小結 98
第五章 結論 99
第六章 未來研究方向 101
參考文獻 102
參考文獻
[1] J. Robertson, “Diamond-like amorphous carbon”, Mater. Sci. Eng. R 37, 129 (2002).
[2] A. Grill, “Diamond-like carbon: state of art” Diamond Relat. Mater. 8, 428 (1999).
[3] J. Gabler, L. Schafer, H. Westermann, “Chemical vapour deposition diamond coated microtools for grinding, milling and drilling“ Diamond Relat. Mater. 9, 921 (2000).
[4] F.L. Freire Jr., M.E.H. Maia da Costa, L.G. Jacobsohn, D.F. Franceschini, “Film growth and relationship between microstructure and mechanical properties of a-C:H:F films deposited by PECVD” Diamond Relat. Mater. 10, 125 (2001).
[5] A. Grill, "Electrical and optical properties of diamond-like carbon", Thin Solid Films 355, 189 (1999).
[6] R. Schnuup, R. Kuhnhold, G. Temmel, E. Burte, H. Ryssel, “Thin carbon films as electrodes for bioelectronic applications“ Biosens. Bioelectron. 13, 889 (1998).
[7] W.J. Wu, M.H. Hon, "Thermal stability of diamond-like carbon films with added silicon", Surf. Coat. Technol. 111, 134 (1999).
[8] F. Fujimoto, K. Ogata, ”Formation of carbon nitride films by means of Ion Assisted Dynamic Mixing (IVD) Method”, Jpn. J. Appl. Phys. 32, 420 (1993).
[9] 龍柏華,”射頻偏壓輔助微波電子迴旋共振化學氣相沉積法成長類鑽碳膜之研究”,成功大學材料學系碩士論文 (1998).
[10] C.M. Lieber, Z.J. Zang, “Synthesis of covalent carbon-nitride solids:Alternative to Diamonds? ” Adv. Mater. 6, 497 (1994).
[11] C.M. Niu, Y.Z. Lu, C.M. Lieber, “Experimental realization of the Covalent Solid Carbon Nitride”, Science 264, 334 (1993).
[12] K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, I.C. Wu, “Observation of crystalline C3N4”, Phys. Rev. B 49, 5034 (1994).
[13] O. Matsumoto, T. Kotaki, H. Shikano, K. Takemura, S. Tanaka, ”Synthesis of carbon nitride in plasma-arc”, J. Electrochem. Soc. 16, 141 (1994).
[14] 薛仰志,”以過濾式陰極電弧沉積系統合成碳氟薄膜及其鑑定之研究”,清華大學材料科學工程研究所碩士論文 (2007).
[15] J.C. Damasceno, S.S. Camargo Jr., F.L. Freire Jr., R. Carius, “Deposition of Si-DLC films with high hardness, low stress and high deposition rates”, Surf. Coat. Technol. 247, 133 (2000).
[16] W.J. Hsieh, P.S. Shih, C.C. Lin, C.Y. Wang, Han C. Shih, "Structure and optical property of the a-C:N films synthesized by filtered cathode vacuum arc", Surf. Coat. Technol. 200, 3175 (2006).
[17] K.L. Chang, S. Han, J.H. Lina, J.W. Hus, H.C. Shih “The effect of MeVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition”, Surf. Coat. Technol. 172, 72 (2003).
[18] S. Veprek, P. Nesladek, A. Niederhofer, F. Glatz, M. Jlek, M. Sma, “ Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness“ Surf. Coat. Technol. 138, 108 (1998).
[19] A. A. Voevodin, J. P. O'Neill, J. S. Zabinski, "Nanocomposite tribological coatings for aerospace applications", Surf. Coat. Technol. 36, 116 (1999).
[20] S. Carvalho, E. Ribeiro, L. Rebouta, J. Pacaud, Ph. Goudeau, P.O. Renault, J.P. Rivie`re, C.J. Tavares, "PVD grown (Ti,Si,Al)N nanocomposite coatings and (Ti,Al)Ny(Ti,Si)N multilayers: structural and mechanical properties", Surf. Coat. Technol. 172, 109 (2003).
[21] T. Zehnder, J. Patscheider, "Nanocomposite TiC/a–C:H hard coatings deposited by reactive PVD" Surf. Coat. Technol. 138, 133 (2000).
[22] B. Feng, D.M. Cao, W.J. Meng, L.E. Rehn, P.M. Baldo and G.L. Doll, "Probing for mechanical and tribological anomalies in the TiC/amorphous hydrocarbon nanocomposite coating system" Thin Solid Films 398, 210 (2001).
[23] R. Bahl, A. Kumar, M. Vedawyas, D. Patel, "Synthesis and characterization of TiC and TiCN coatings", Appl. Phys. 69, 643 (1999).
[24] T. B. Massalski et al., "Binary alloy phase diagrams" Materials Park, Ohio :ASM International, 888 (1990).
[25] R.L. Boxman and S. Goldsmith, ” Macroparticle contamination in cathodic arc coatings : generation , transport and control ”, Surf. Coat. Technol. 39, 52 (1992).
[26] Z.Q. Ma, Y. Kido, ”The atomic displacements on surface generated by low-energy projectile ”, Thin Solid Films 359, 288 (2000).
[27] R.L. Boxman, P.J. Martin, D. Sanders, “Handbook of Vacuum Arc Science and Technology”, Noyes, New York, (1996).
[28] P. Siemroth, T. Schülke, T. Witke, “High-Current arc – a new source for high –rate deposition ”, Surf. Coat Technol. 68, 314 (1994).
[30] T. Schuelke, T. Writke, H-J. Scheibe, P. Siemroth, B. Schultrich, O. Zimmer, “Comparison of DC and AC arc films deposition techniques ”,J. Vetter, Surf. Coat. Technol. 120, 226 (1999).
[31] E. Erturk, H.-J. Heuvel and H.-G. Dedrich, ” CrN and (Ti , Al)N coatings deposited by the steered arc and random arc techniques ” , Surf. Coat. Technol. 39, 455 (1989).
[32] H.-D. Steffens, M.Mack, K. Moehwald and K. Reichel, “ Reduction of droplet emission in random arc technology ”,Surf. Coat. Technol. 65, 46 (1991).
[33] A. Anders, “Approaches to rid cathodic arc plasmas of macro and nanoparticles : a review ”,Surf. Coat. Technol. 20, 319 (1999).
[34] K. Miernik, J. Walkowicz,”Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs ”, Surf. Coat. Technol. 125, 161 (2000).
[35] J. S. Yoon, J. G. Han, ”The ion current density and spectroscopic study in a straight magnetic filtering arc deposition system ”, Surf Coat, Technol. 94, 201 (1997).
[36] A. Anders, R. A. Macgill, ” Twist filter for the removal of macroparticles from cathodic arc plasmas.”, Surf. Coat. Technol. 133, 96 (2000).
[37] S. Anders, A. Anders, M.R. Dickenson, R. Macgill, I.G. Brown, ”S-Shaped magnetic macroparticle filter for cathodic arc
deposition ” IEEE. Trans. Plasma Sci. 25, 670 (1997).
[39] K. K. Corvin, S. J. B. Corrigan, J. Chem. Phys. 50, 1570 (1969).
[40] B. Bhushan, “Handbook of micro/nano tribology” 2nd , (2000).
[41] S. B. Qadri, B. Molnar, M. Yousuf, “ X-ray determination of strain in ion implanted GaN” Nuclear Instrument and Methods in Physics Research B 190, 878 (2002).
[42] M. Farley, B. Simonton, “Ion Implantation Science and Technology”, I.I.T. Co., 511 (1996).
[43]高啟原”以金屬蒸氣真空弧離子佈植技術進行氧化鋅透明導電薄膜之製作”成功大學微機電所碩士論文 (2005)
[44] J. F. Ziegler, “Handbook of ion implantation technology”, North Holland, 25 (1992).
[45] H. J. Kim, W.B. Carter, R. F. Hochman, "Corrosion behavior of surface- films on boron-implanted high-purity iron and stainless-steels", Mater. Sci. Eng. 69, 297 (1985).
[46]汪建民, “材料分析”, 中國材料科學學會, 659 (1998)
[47] http://nanosioe.ee.ntu.edu.tw/semilab/manual/Manu1.pdf
[48]丁志華,管正平,黃新言,戴寶通, “奈米壓痕量測系統介紹”,奈米通訊,第九卷,第三期
[49] D. Rat. et al. "Characterization of diamond films deposited on titanium and its alloys", Thin Solid Films 270, 177 (1995).
[50] http://en.wikipedia.org/wiki/Titanium
[51] http://en.wikipedia.org/wiki/Carbon
[52] K.Y. Gao, B.X. Liu, “High current Ni-ion implantation into Al films”, Nucl. Instr. and Meth. 132, 68 (1997).
[53] F. Tuinstra, J. Koening, “Raman Spectrum of Graphite”, J. L. Chem. Phys. 53, 1126 (1970).
[54] P.C. Eklund, J.M. Holden, R.A. Jishj, “Vibrational modes of carbon nanotubes;spectroscopy and theory”, Carbon 33, 959 (1995).
[55] J.H. Kaufman, S. Metin, “Symmetry breaking in nitrogen-doped amorphous carbon : Infrared observation of the Raman-active G and D bands”, Phys. Rev. B 39, 13053 (1989).
[56] L. Norin, S. McGinnis, U. Jansson, J. O. Carlsson, "Low temperature deposition of epitaxial titanium carbide on MgO(001) by co-evaporation of C60 and Ti", J. Vac. Sci. Technol. 15, 3082 (1997).
[57] F. Gao, Phys. Rev. B 73, 132104 (2006).
[58] R. Bahl et al., Appl. Phys. 69, 643 (1999).
[59] Y. Park et al., Jpn. J. Appl. Phys. 44, 3196 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top