|
1. Curl, R.F., Rev. Mod. Phys, 1997. 69: p. 691. 2. Kroto, H., Rev. Mod. Phys, 1997. 69: p. 703. 3. Smalley, R.E., Rev. Mod. Phys, 1997. 69: p. 723. 4. Iijima, s., Nature, 1991. 56: p. 354. 5. R. H. Baughman, A.A.Z., and W. A. de Heer, Carbon nanotubes - the route toward applications. Science, 2002. , vol. 297: p. 787-792. 6. R.Saito, G.D.a.M.D., Physical Properties of Carbon Nanotubes. Imperial College Press, 1998. 7. T.Dove, M., Introduction to lattice dynamics. Cambridge University Press, 1993. 8. Terrones, M., Annu. Rev. Mater.Res, 2003. 33: p. 419-501. 9. A. M. Rao, E.R., Shunji Bandow, Bruce Chase,P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy,M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus,M. S. Dresselhaus, Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. SCIENCE, 1997. 275: p. 187. 10. Bethune DS, K.C., De Vries MS, Gorman G, Savoy R, Vazquez J,, Cobalt catalysed growth of carbon nanotubes with single atomic-layer walls. Nature 1993;363:605–7. 363: p. 605-611. 11. HP., B., The first observation of carbon nanotubes. Carbon, 1997. 35: p. 581-585. 12. Iijima S, I.T., Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363: p. 603-608. 13. Marc Monthioux, H.A., and Ronald L. Jacobsen, Chemical vapour deposition of pyrolytic carbon on carbon nanotubes Part 3: Growth mechanisms Carbon, 2006. 44(15): p. 3183-3194 14. Oberlin A, E.M., Koyama T., Filamentous growth of carbon through benzene decomposition. J Cryst Growth. J Cryst Growth, 1976. 32: p. 335-383. 15. S., I., Helical microtubules of graphite carbon. Nature, 1991. 354: p. 56-63. 16. P. Lauffer, K.V.E., R. Graupner, Th. Seyller, L. Ley, S. A. Reshanov and H. B. Weber, Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B, 2008. 77: p. 155426. 17. Aleiner, I.L.E., K. B. , Effect of Disorder on Transport in Graphene Physical Review Letters, 2006. 97: p. 236801/1-236801/4. 18. Novoselov, K.S.G., A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. , Electric Field Effect in Atomically Thin Carbon Films Science, 2004. 306: p. 666-669 19. Jun Yan, Y.Z., Philip Kim, and Aron Pinczuk, Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett., 2007. 98: p. 166802. 20. J. M. B. Lopes dos Santos, N.M.R.P., and A. H. Castro Neto, Graphene Bilayer with a Twist: Electronic Structure. Phys. Rev. Lett., 2007. 99: p. 256802. 21. R. N. Costa Filho, G.A.F., and F. M. Peeters, Graphene ribbons with a line of impurities: Opening of a gap. Phys. Rev. B, 2007. 76: p. 193409. 22. NOVOSELOV, A.K.G.A.K.S., The rise of graphene. nature materials, 2007. 6: p. 183-191. 23. K. S. Novoselov, Z.J., Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Room-Temperature Quantum Hall Effect in Graphene. science, 20047. 315: p. 1379 24. McCann, E.K., K.; Fal'ko, Vladimir I.; Suzuura, H.; Ando, T.; Altshuler, B. L. , Weak-Localization Magnetoresistance and Valley Symmetry in Graphene Physical Review Letters, 2006. 97: p. 146805/1-146805/4. 25. Ohta, T.B., Aaron; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli Controlling the Electronic Structure of Bilayer Graphene Science, 2006. 313: p. 951-954 26. S. Viola Kusminskiy, J.N., D. K. Campbell, and A. H. Castro Neto, Electronic Compressibility of a Graphene Bilayer. Phys. Rev. Lett., 2008. 100: p. 106805. 27. Jeroen B. Oostinga, H.B.H., Xinglan Liu, Alberto F. Morpurgo & Lieven M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices. Nature Materials, 2007. 7: p. 151 - 157. 28. S. V. Morozov, K.S.N., M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett., 2008. 100: p. 016602. 29. Neto, J.N.a.A.H.C., Impurities in a Biased Graphene Bilayer. Phys. Rev. Lett., 2007. 98,: p. 126801. 30. Eduardo V. Castro, N.M.R.P., J. M. B. Lopes dos Santos, A. H. Castro Neto, and F. Guinea, Localized States at Zigzag Edges of Bilayer Graphene. Phys. Rev. Lett., 2008. 100: p. 026802. 31. J�爆sef Cserti, A.C., and Gyula D�償id, Role of the Trigonal Warping on the Minimal Conductivity of Bilayer Graphene. Phys. Rev. Lett., 2007. 99: p. 066802. 32. Harrisona), K.L.A.a.R.G., A computer-controlled Gerdien atmospheric ion counter. REVIEW OF SCIENTIFIC INSTRUMENTS, 2000. 71: p. 3037-3041. 33. K. Tanaka, T.Y., K. Fukui, The Science and Technology of Carbon Nanotubes. Elsevier Science, 1999. 1 edition 34. M. S. Dresselhaus, G.D., and P. C. Eklund,, Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego, 1996. 35. M Meyyappan, L.D., Alan Cassell and David Hash, Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol., 2003. 12: p. 205-216. 36. R.E. Smalley, M.S.D., Gene Dresselhaus, Phaedon Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, 2001. 1 edition. 37. Stephanie Reich, C.T., Janina Maultzsch Carbon Nanotubes: Basic Concepts and Physical Properties Wiley-VCH, 2004. 38. Susumu Yoshimura, R.P.H.C., Supercarbon: Synthesis, Properties and Applications (Springer Series in Materials Science). Springer, 1999. 1 edition 39. Paul L. McEuen, M.B., David H. Cobden , Young-Gui Yoon, and Steven G. Louie, Disorder, Pseudospins, and Backscattering in Carbon Nanotubes. Phys. Rev. Lett., 1999. 83: p. 5098 - 5101 40. Daniel S�鴨chez-Portal, E.A., Jos�� M. Soler, Angel Rubio, and Pablo Ordej�曝, Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B, 1999. 59: p. 12678 - 12688. 41. Lorin X. Benedict, S.G.L., and Marvin L. Cohen, Static polarizabilities of single-wall carbon nanotubes. Phys. Rev. B, 1995. 52: p. 8541 - 8549. 42. W. Desorbo, G.E.N., A calorimeter for the temperature region 1–20°K—The specific heat of some graphite specimens. Journal of Physics and Chemistry of Solids, 1958. 6: p. 352-366. 43. Grayson Alexander, M., et al., Synthesis and low temperature specific heat of the graphite intercalation compounds KHgC4 and KHgC8. Synthetic Metals, 1980. 2(3-4): p. 203-211. 44. Kelly, B.T., Physics of Graphite. Springer, 1981. 1 edition 45. Neil W. Ashcroft, N.D.M., Solid state physics. Thomson Learning, 1976: p. 415-531. 46. G. W. C. Kaye , T.H.L., Tables of Physical and Chemical Constants: And Some Mathematical Functions Longman Scientific and Technical, 1995. 47. I. Božović , N.B., M. Damnjanović, Optical dichroism in nanotubes. Phys. Rev. B, 2000. 62: p. 6971 - 6974. 48. M. Damnjanovi, T.V., I. Miloevi, Fermi level quantum numbers and secondary gap of conducting carbon nanotubes. Solid State Communications, 2000. 116(5): p. 265-267. 49. T. Vuković , I.M., and M. Damnjanović, Carbon nanotubes band assignation, topology, Bloch states, and selection rules. Phys. Rev. B 2002. 65: p. 045418. 50. Shuichi Tasaki, K.M., Tokio Yamabe, π-band contribution to the optical properties of carbon nanotubes: Effects of chirality. Phys. Rev. B, 1998. 57: p. 9301 - 9318. 51. J. Lefebvre, Y.H., and P. Finnie, Bright Band Gap Photoluminescence from Unprocessed Single-Walled Carbon Nanotubes. Phys. Rev. Lett., 2003. 90: p. 217401. 52. Iijima, S.I., Toshinari Single-shell carbon nanotubes of 1-nm diameter Nature, 1993. 363: p. 603-605. 53. Journet, C.M., W. K.; Bernier, P.; Loiseau, A.; Lamy de la Chapells, M.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E., Large-scale production of single-walled carbon nanotubes by the electric-arc technique Nature, 1997. 388: p. 756-758. 54. Cheng, H.M., Li, F. , Sun, X. , Brown, S.D.M. , Pimenta, M.A. , Marucci, A. , Dresselhaus, G. , Dresselhaus, M.S. , Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters 1998. 289: p. 602-610 55. Colomer, J.-F., Stephan, C. , Lefrant, S. , Van Tendeloo, G. , Willems, I. , Kónya, Z. , Fonseca, A. , Laurent, C. , Nagy, J.B. , Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters 2000. 317: p. 83-89 56. Colomer, J.-F., Benoit, J.-M. , Stephan, C. , Lefrant, S. , Van Tendeloo, G. , B.nagy, J. , Characterization of single-wall carbon nanotubes produced by CCVD method. Chemical Physics Letters 2001. 345: p. 11-17. 57. Berger, C.S., Zhimin; Li, Tianbo; Li, Xuebin; Ogbazghi, Asmerom Y.; Feng, Rui; Dai, Zhenting; Marchenkov, Alexei N.; Conrad, Edward H.; First, Phillip N.; de Heer, Walt A. , Ultrathin epitaxial graphite: two-dimensional electron gas properties and a route toward graphene-based nanoelectronics Journal of Physical Chemistry B, 2004. 108: p. 19912-19916. 58. Hafner, J.H., Bronikowski, M.J., Azamian, B.R., Nikolaev, P., Rinzler, A.G., Colbert, D.T., Smith, K.A., Smalley, R.E. , Catalytic growth of single-wall carbon nanotubes from metal particles. Chemical Physics Letters 1998. 296: p. 195-202. 59. Kong, J.C., Alan M.; Dai, Hongjie Chemical vapor deposition of methane for single-walled carbon nanotubes Chemical Physics Letters, 1998. 292: p. 567-574. 60. Tang, S., Zhong, Z., Xiong, Z., Sun, L., Liu, L., Lin, J., Shen, Z.X., Tan, K.L. , Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters 2001. 350: p. 19-26. 61. Coquay, P., et al., Carbon Nanotubes by a CVD Method. Part I: Synthesis and Characterization of the (Mg, Fe)O Catalysts. J. Phys. Chem. B, 2002. 106(51): p. 13186-13198. 62. Coquay, P., et al., Carbon Nanotubes by a CVD Method. Part II: Formation of Nanotubes from (Mg, Fe)O Catalysts. J. Phys. Chem. B, 2002. 106(51): p. 13199-13210. 63. RonaldL, A.H.M.M.J., Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 1. Synthesis and morphology. Carbon 2003. 41: p. 2897-2912 64. Hatem Allouchea, a.M.M., Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Part 2. Texture and structure Carbon, 2005. 43(6): p. 1265-1278 65. M. L. Terranova, V.S., M. Rossi, The World of Carbon Nanotubes: An Overview of CVD Growth Methodologies. Chemical Vapor Deposition, 2006. 12(6): p. 315 - 325. 66. A. Urbina, I.E., A. P�臆ez-Garrido, A. D�朦z-S�鴨chez, and J. Abell�鴨 Quantum Conductance Steps in Solutions of Multiwalled Carbon Nanotubes Phys. Rev. Lett. , 2003. 90: p. 106603. 67. Ali Javey, J.G., Magnus Paulsson, Qian Wang, David Mann, Mark Lundstrom, and Hongjie Dai, High-Field Quasiballistic Transport in Short Carbon Nanotubes. PRL, 2004. 92: p. 106804-1. 68. Jeremy Taylor, H.G., and Jian Wang Ab initio modeling of quantum transport properties of molecular electronic devices Phys. Rev. B, 2001. 63: p. 245407. 69. Jing Kong, E.Y., Thomas W. Tombler, Woong Kim, Hongjie Dai, Robert B. Laughlin, Lei Liu, C. S. Jayanthi, and S. Y. Wu Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides Phys. Rev. Lett., 2001. 87: p. 106801. 70. Michele Lazzeri, S.P., Francesco Mauri, A. C. Ferrari, and J. Robertson Electron Transport and Hot Phonons in Carbon Nanotubes Phys. Rev. Lett., 2005. 95: p. 236802. 71. Govindan, M.P.A.a.T.R., Conductance of carbon nanotubes with disorder: A numerical study Phys. Rev. B 1998. 58: p. 4882. 72. Amir A. Farajian, K.E., and Yoshiyuki Kawazoe Nonlinear Coherent Transport Through Doped Nanotube Junctions Phys. Rev. Lett., 1999. 82: p. 5084. 73. J. J. Palacios, A.J.P.-J., E. Louis, E. SanFabi�鴨, and J. A. Verg�臃 First-Principles Phase -Coherent Transport in Metallic Nanotubes with Realistic Contacts Phys. Rev. Lett., 2003. 90: p. 106801. 74. E. J. Mele, P.K., and David Tom�鴨ek Coherent control of photocurrents in graphene and carbon nanotubes Phys. Rev. B, 2000. 61: p. 7669. 75. V. Krstić, S.R., and M. Burghard Phase breaking in three-terminal contacted single-walled carbon nanotube bundles Phys. Rev. B, 2000. 62: p. R16353 76. Junji Haruyama, I.T., and Tetsuro Hasegawa Weak localization and phase interference due to spin-orbit interaction in metal-doped carbon nanotubes Phys. Rev. B 2002. 65: p. 033402. 77. H. R. Shea, R.M., and Ph. Avouris Electrical Transport in Rings of Single-Wall Nanotubes : One-Dimensional Localization Phys. Rev. Lett., 2000. 84: p. 4441. 78. Paramita Kar Choudhury, M.J., and Reghu Menon Magnetoconductance in single-wall carbon nanotubes : Electron-electron interaction and weak localization contributions Phys. Rev. B 2007. 76: p. 235432. 79. L. Langer, V.B., E. Grivei, J.-P. Issi, J. P. Heremans, C. H. Olk, L. Stockman, C. Van Haesendonck, and Y. Bruynseraede Quantum Transport in a Multiwalled Carbon Nanotube Phys. Rev. Lett. , 1996. 76: p. 479. 80. Alain Rochefort, P.A., Fr�縴�臆ic Lesage, and Dennis R. Salahub Electrical and mechanical properties of distorted carbon nanotubes Phys. Rev. B 1999. 60: p. 13824. 81. K. Liu, P.A., R. Martel, and W. K. Hsu Electrical transport in doped multiwalled carbon nanotubes Phys. Rev. B, 2001. 63: p. 161404. 82. R. Saito, T.T., T. Kimura, G. Dresselhaus and M. S. Dresselhaus, Raman intensity of single-wall carbon nanotubes. Phys. Rev. B., 1998. 57: p. 4145 - 4153. 83. M. Baxendale, V.Z.M., S. Yoshimura, and R. P. Chang Magnetotransport in bundles of intercalated carbon nanotubes Phys. Rev. B 1997. 56: p. 2161. 84. R. Tarkiainen, M.A., A. Zyuzin, P. Hakonen, and M. Paalanen Transport in strongly disordered multiwalled carbon nanotubes Phys. Rev. B 2004. 69: p. 033402. 85. Kun Liu, S.R., G. S. D�卲berg, G. T. Kim, Dorina Popa, K. Mukhopadhyay, Roger Doome, and J. B. Nagy Antilocalization in multiwalled carbon nanotubes Phys. Rev. B, 2000. 61: p. 2375. 86. H. Mehrez, H.G., Jian Wang, and Christopher Roland Carbon nanotubes in the Coulomb blockade regime Phys. Rev. B 2001. 63: p. 245410. 87. Charles Kane, L.B., and Matthew P. Fisher Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes Phys. Rev. Lett., 1997. 79: p. 5086. 88. M.R. Buitelaar, A.B., T. Nussbaumer, M. Iqbal, and C. Sch�圢enberger Multiwall Carbon Nanotubes as Quantum Dots Phys. Rev. Lett., 2002. 88: p. 156801. 89. Glazman, M.P.a.L.I., Kondo effect induced by a magnetic field Phys. Rev. B, 2001. 64: p. 045328. 90. R. Tarkiainen, M.A., J. Penttil��, L. Roschier, P. Hakonen, M. Paalanen, and E. Sonin Multiwalled carbon nanotube : Luttinger versus Fermi liquid Phys. Rev. B, 2001. 64: p. 195412. 91. Jean-Christophe Charlier, X.B., and Stephan Roche Electronic and transport properties of nanotubes Rev. Mod. Phys., 2007. 79: p. 667. 92. Tsvelik, L.S.L.a.A.M., Narrow-Gap Luttinger Liquid in Carbon Nanotubes Phys. Rev. Lett. , 2003. 90: p. 016401. 93. H. Mehrez, J.T., Hong Guo, Jian Wang, and Christopher Roland Carbon Nanotube Based Magnetic Tunnel Junctions Phys. Rev. Lett. , 2000. 84: p. 2682. 94. Daniel Orlikowski, H.M., Jeremy Taylor, Hong Guo, Jian Wang, and Christopher Roland Resonant transmission through finite-sized carbon nanotubes Phys. Rev. B, 2001. 63: p. 155412 95. Anders Hansson, M.P., and Sven Stafstr�卌 Effect of bending and vacancies on the conductance of carbon nanotubes Phys. Rev. B 2000. 62: p. 7639. 96. W. Yi, L.L., H. Hu, Z. W. Pan, and S. S. Xie Tunneling into Multiwalled Carbon Nanotubes : Coulomb Blockade and the Fano Resonance Phys. Rev. Lett. , 2003. 91: p. 076801. 97. Tersoff, F.L.a.J., Multiple Functionality in Nanotube Transistors Phys. Rev. Lett. , 2002. 88: p. 258302. 98. David Ferry, S.M.G., Transport in Nanostructures (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering) Cambridge University Press, 1999. New Ed edition 99. Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering). Cambridge University Press, 1997. New Ed edition. 100. Heinzel, T., Mesoscopic Electronics in Solid State Nanostructures Wiley-VCH, 2007. 2 edition. 101. Davies, J.H., The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, 1997. 102. kittel, c., Introduction to the solid stae physics. John Wiley & Sons, Inc, 1996. 7th edition: p. 99-140. 103. Srivastava, G.P., The physics of phonons. Adam Hilger, 1990. 104. R. Saito, T.T., and T. Kimura,G. Dresselhaus and M. S. Dresselhaus, Raman intensity of single-wall carbon nanotubes. PRB, 1998. 57: p. 4145. 105. Ferrari, A.C.M., J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. , Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97: p. 187401/1-187401/4. 106. kittel, c., Introduction to the solid stae physics. John Wiley & Sons, Inc, 1996. 7th edition: p. 662-665. 107. C, K.W.a.H.M., A chemist’s guide to density-functional theory. Wiley, 2001. 2nd edn. 108. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864. 109. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133. 110. Levine, I.N., Quantum Chemistry Prentice Hall, 2000. 5th edn. 111. Cramer, C.J., Essentials of Computational Chemistry: Theories and Models Wiley, 2004. 2 edn. 112. Ivar Martin, Y.M.B., and A. F. Morpurgo, Topological Confinement in Bilayer Graphene. Phys. Rev. Lett., 2008. 100: p. 036804. 113. Davidson, E.R., Quantum Theory of Matter: Introduction. Chem. Rev., 1991 91: p. 649 - 649. 114. Kohn, W., Variational Methods for Periodic Lattices. Physical Review, 1952. 87(3): p. 472. 115. Kohn, W., Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian. Physical Review, 1959. 115(6): p. 1460. 116. Kohn, W., Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Reviews of Modern Physics, 1999. 71(5): p. 1253. 117. Kohn, W. and J.M. Luttinger, Quantum Theory of Electrical Transport Phenomena. Physical Review, 1957. 108(3): p. 590. 118. Kohn, W. and J.M. Luttinger, Ground-State Energy of a Many-Fermion System. Physical Review, 1960. 118(1): p. 41. 119. Kohn, W., Y. Meir, and D.E. Makarov, van der Waals Energies in Density Functional Theory. Physical Review Letters, 1998. 80(19): p. 4153. 120. Luttinger, J.M. and W. Kohn, Quantum Theory of Electrical Transport Phenomena. II. Physical Review, 1958. 109(6): p. 1892. 121. Payne, M.C., et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045. 122. Sham, L.J. and W. Kohn, One-Particle Properties of an Inhomogeneous Interacting Electron Gas. Physical Review, 1966. 145(2): p. 561. 123. Ullrich, C.A. and W. Kohn, Kohn-Sham Theory for Ground-State Ensembles. Physical Review Letters, 2001. 87(9): p. 093001. 124. W, P.R.a.Y., Density-functional theory of atoms and molecules. Oxford, 1989. 125. Ziegler, T., Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev., 1991. 91: p. 651-667. 126. Segall, M.D.L., P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., first-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Cond. Matt., 2002. 12: p. 2717. 127. Ackland, G.J.W., M.C.; Clark, S. J., Practical methods in ab initio lattice dynamics. J. Phys.: Condens. Matter, 1997. 9: p. 7861. 128. Perdew, J.P.B., K.; Ernzerhof, M, Generalized Gradient Approximation Made Simple. PRL, 1996. 77: p. 3865. 129. H. Stahl, J.A., R. Martel, Ph. Avouris, and B. Lengeler, Intertube Coupling in Ropes of Single-Wall Carbon Nanotubes. Phys. Rev. Lett, 2000. 85: p. 5186 - 5189 130. B. Bourlon, C.M., L. Forr��, D. C. Glattli, and A. Bachtold, Determination of the Intershell Conductance in Multiwalled Carbon Nanotubes. Phys. Rev. Lett., 2004. 93: p. 176806. 131. Zhen Yao, C.L.K., and Cees Dekker, High-Field Electrical Transport in Single-Wall Carbon Nanotubes. PRL, 2000. 84: p. 2941. 132. Savas Berber, Y.-K.K., and David Tom�鴨ek, Unusually High Thermal Conductivity of Carbon Nanotubes. PRL, 2000. 84: p. 4613. 133. Lanhua Wei, P.K.K., R. L. Thomas, T. R. Anthony, and W. F. Banholzer, Thermal conductivity of isotopically modified single crystal diamond Phys. Rev. Lett., 1993. 70: p. 3764. 134. J. Hone, B.B., Z. Benes, A. T. Johnson, J. E. Fischer, Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. SCIENCE, 2000. 289: p. 1730. 135. C.T. Hsu, W.K.H., Enhancement of temperature dependent mechanism by internanotube junctions. APL, 2007. 90: p. 253104. 136. S. Rols, Z.B., E. Anglaret, J. L. Sauvajol, P. Papanek, J. E. Fischer, G. Coddens, Phonon Density of States of Single-Wall Carbon Nanotubes. PRL, 2000. 85: p. 5222. 137. Jin Yu, R.K.K., and Priya Vashishta, Phonons in graphitic tubules: A tight-binding molecular dynamics study. J.Chem.Phys., 1995. 103: p. 6697. 138. J.-L. Sauvajol, E.A., S. Rols1, L. Alvarez, Phonons in single wall carbon nanotube bundles. carbon, 2002. 40: p. 1697. 139. J. Hone, M.W., C. Piskoti, and A. Zettl, Thermal conductivity of single-walled carbon nanotubes. PRB, 1999. 59: p. R2514. 140. Paul Delaney, H.J.C., Jisoon Ihm, Steven G. Louie and Marvin L. Cohen, Broken symmetry and pseudogaps in ropes of carbon nanotubes. Nature, 1998. 391: p. 466-468. 141. Paul Delaney, H.J.C., Jisoon Ihm , Steven G. Louie, and Marvin L. Cohen, Broken symmetry and pseudogaps in ropes of carbon nanotubes Phys. Rev. B, 1999. 60(11): p. 7899 - 7904. 142. Young-Kyun Kwon, S.S., David Toma´nek, Effect of intertube coupling on the electronic structure of carbon nanotube ropes Phys. Rev. B, 1998. 58(20): p. R13314 - R13317. 143. G. Journet, W.K.M., P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J.E. Fischer, Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997. 388: p. 756. 144. S.H. Jhi, S.G.L., M.L. Cohen, Electronic Properties of Oxidized Carbon Nanotubes. Phys. Rev. Lett,, 2000. 85: p. 1710. 145. S.M. Bachilo, M.S.S., C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science, 2002. 298: p. 2361. 146. M. Freitag, Y.M., J.A. Misewich, R. Martel, Ph. Avouris, Photoconductivity of Single Carbon Nanotubes. Nano-Letters, 2003. 3: p. 1067. 147. Michael J. O'Connell, S.M.B., Chad B. Huffman, Valerie C. Moore, Michael S. Strano, Erik H. Haroz, Kristy L. Rialon, Peter J. Boul, William H. Noon, Carter Kittrell, Jianpeng Ma, Robert H. Hauge, R. Bruce Weisman, and Richard E. Smalley, Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes. Science, 2002. 297: p. 593. 148. T. Hertel, G.M., Electron-Phonon Interaction in Single-Wall Carbon Nanotubes: A Time-Domain Study Phys. Rev. Lett., 2000. 84: p. 5002. 149. T. Zhao, C.C.M., L.H. Wong, G. Chen, Z. Xu, Q. Zheng, Q. Jiang, A.T. Chwang., Energy exchanges in carbon nanotube oscillator. Nanotechnology, , 2006. 17: p. 1032. 150. W. Yi, L.L., D.L Zhang, Z.W. Pan, S.S. Xie., Linear specific heat of carbon nanotubes. Phys. Rev. B, , 1999. 59, : p. 9015. 151. W.A.D. Heer, W.S.B., A. Ch�繑elain, T. Gerfin, R. Humphrey-Baker, L. Forr��, D. Ugarte., Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties Science, , 1995. 268: p. 845. 152. H.Y. Chiu, V.V.D., H.W. Ch.Postma, C.N. Lau, C. Mik��, L. Forr��, M. Bockrath, Ballistic Phonon Thermal Transport in Multiwalled Carbon Nanotubes. Phys. Rev. Lett, , 2005. 95: p. 226101. 153. M.E. Itkis, F.B., A. Yu, R.C. Haddon, Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films. Science, , 2006. 312: p. 413. 154. N. Y. Huang, J.C.S., Jun Chen, S. Z. Deng, N. S. Xu, H. Bishop, S. E. Huq, L. Wang, D. Y. Zhong, E. G. Wang, and D. M. Chen., Mechanism Responsible for Initiating Carbon Nanotube Vacuum Breakdown. Phys. Rev. Lett, , 2004. 93: p. 075501. 155. Hugo E. Romero, K.B., Arne Ros�聲, and Peter C. Eklund, Atom Collision-Induced Resistivity of Carbon Nanotubes Science 2005. 307: p. 89-93. 156. Jing Kong, N.R.F., Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, and Hongjie Dai, Nanotube Molecular Wires as Chemical Sensors. Science, 2000. 287: p. 622-625. 157. Heinze, S., et al., Carbon Nanotubes as Schottky Barrier Transistors. Physical Review Letters, 2002. 89(10): p. 106801. 158. V. Derycke, R.M., J. Appenzeller, and Ph. Avouris, Controlling doping and carrier injection in carbon nanotube transistors. APPLIED PHYSICS LETTERS, 2002. 80: p. 2773-2775. 159. Arab, M., et al., Molecular selectivity due to adsorption properties in nanotubes. Physical Review B, 2004. 69(16): p. 165401. 160. Jijun Zhao, A.B., Jie Han and Jian Ping Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. nanotechnology, 2002. 13: p. 195-200. 161. Kim Bolton and Arne Ros�聲, Computational studies of gas–carbon nanotube collision dynamics. Phys. Chem. Chem. Phys., 2002. 4: p. 4481-4488. 162. Miyamoto, Y., et al., Photodesorption of oxygen from carbon nanotubes. Physical Review B, 2004. 70(23): p. 233408. 163. Philip G. Collins, K.B., Masa Ishigami, and A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes Science, 2000. 287: p. 1801-1804 164. Sumanasekera, G.U., et al., Effects of Gas Adsorption and Collisions on Electrical Transport in Single-Walled Carbon Nanotubes. Physical Review Letters, 2000. 85(5): p. 1096. 165. Hari P. Dahal, A.V.B., and Jian-Xin Zhu, Tuning impurity states in bilayer graphene. Phys. Rev. B, 2008. 77: p. 115114. 166. Hummer, G., J.C. Rasaiah, and J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 2001. 414(6860): p. 188-190. 167. Koga, K., et al., Formation of ordered ice nanotubes inside carbon nanotubes. Nature, 2001. 412(6849): p. 802-805. 168. Lopez-Pastor, M., et al., Separation of Single-Walled Carbon Nanotubes by Use of Ionic Liquid-Aided Capillary Electrophoresis. Anal. Chem., 2008. 80(8): p. 2672-2679. 169. Ghosh, S., A.K. Sood, and N. Kumar, Carbon Nanotube Flow Sensors. Science, 2003. 299(5609): p. 1042-1044. 170. Shapiro, P.K.a.M., Nanotube Electron Drag in Flowing Liquids. Physical Review Letters, 2001. 86(1): p. 131. 171. Strano, M.S., et al., Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization. Science, 2003. 301(5639): p. 1519-1522. 172. Yuchen, M., et al., Nitrogen in graphite and carbon nanotubes: Magnetism and mobility. Physical Review B (Condensed Matter and Materials Physics), 2005. 72(20): p. 205416. 173. Srivastava, G.P.W., D. , The theory of the cohesive energies of solids. Adv. Phys., 1987. 26: p. 463-517. 174. Hohenberg, P.K., W., Inhomogeneous electron gas. Phys. Rev. B, 1964. 136: p. 864-871. 175. Dieter Heymann, L.P.F.C., Robert R. Brooks, Wendy S. Wolbach, Richard E. Smalley, , Fullerenes in the Cretaceous-Tertiary Boundary Layer Science, 1994. . 265: p. 645. 176. Terry K. Daly, P.R.B., Peter Williams, and Charles F. Lewis, Fullerenes from a Fulgurite Science, 1993. 259: p. 1599-1601. 177. L. Becker, J.L.B., R. E. Winans & T. E. Bunch, Fullerenes in Allende meteorite. Nature, 1994. 372: p. 507. 178. Filippo Radicati di Brozolo, T.E.B., Ronald H. Fleming & John Macklin Fullerenes in an impact crater on the LDEF spacecraft 1994. 369: p. 37. 179. M. Reibold, P.P., A. A. Levin, W. Kochmann, N. P�鱸zke and D. C. Meyer, Materials: Carbon nanotubes in an ancient Damascus sabre. Nature, 2006. 444: p. 286. 180. Gavillet, J., et al., Root-Growth Mechanism for Single-Wall Carbon Nanotubes. Physical Review Letters, 2001. 87(27): p. 275504. 181. Gamaly, E.G. and T.W. Ebbesen, Mechanism of carbon nanotube formation in the arc discharge. Physical Review B, 1995. 52(3): p. 2083. 182. Novoselov, K.S.G., A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. , Two-dimensional gas of massless Dirac fermions in graphene Nature 2005. 438: p. 197-200 183. Novoselov, K.S.J., D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. , Two-dimensional atomic crystals Proceedings of the National Academy of Sciences of the United States of America, 2005. 102: p. 10451-10453 184. Hubert B. Heersche, P.J.-H., Jeroen B. Oostinga, Lieven M. K. Vandersypen & Alberto F. Morpurgo, Bipolar supercurrent in graphene. Nature, 2006. 446: p. 56-59. 185. S. Y. Zhou, G.-H.G., J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.-H. Lee, Steven G. Louie and A. Lanzara, First direct observation of Dirac fermions in graphite. Nature Physics, 2006. 2: p. 595 - 599. 186. Grunze, A.P.a.M., Water-Graphite Interaction and Behavior of Water Near the Graphite Surface J. Phys. Chem. B., 2004. 108: p. 1357 -1364. 187. Kenji Hata, D.N.F., Kohei Mizuno, Tatsunori Namai, Motoo Yumura, and Sumio Iijima, Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes Science 2004 306: p. 1362-1364. 188. Savage, R.H., Graphite Lubrication. J. Appl. Phys. , 1948. 19: p. 1. 189. Zhang, Y.T., Yan-Wen; Stormer, Horst L.; Kim, Philip Experimental observation of the quantum Hall effect and Berry's phase in graphene Nature 2005. 438: p. 201-204 190. Gusynin, V.P.S., S. G. , Unconventional Integer Quantum Hall Effect in Graphene Physical Review Letters, 2005. 95: p. 146801/1-146801/4. 191. Bunch, J.S.Y., Yuval; Brink, Markus; Bolotin, Kirill; McEuen, Paul L. , Coulomb Oscillations and Hall Effect in Quasi-2D Graphite Quantum Dots Nano Letters, 2005. 5: p. 287-290 192. Berger C, S.Z., Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA., Electronic confinement and coherence in patterned epitaxial graphene. Science., 2006. 312: p. 1191 - 1196. 193. Morozov, S.V.N., K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. , Strong Suppression of Weak Localization in Graphene Physical Review Letters, 2006. 97: p. 016801/1-016801/4. 194. Grunze, A.P.a.M., Water as a lubricant for graphite: A computer simulation study. J. Chem. Phys., 2006. 125: p. 114707. 195. Ceperley, D.M.A., B. J. , Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett., 1980. 45: p. 566-569. 196. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990. 41(11): p. 7892. 197. Pfrommer, B.G.C., M.; Louie S. G.; Cohen, M. L. , Relaxation of Crystals with the Quasi-Newton Method. J. Comput. Phys., 1997. 131: p. 133-140.
|