|
(1) Z. Yao, C. L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84 (13), 2941-2944 (2000) (2) A.V. Melechko, V. I. Merkulov, T. E. McKnight, et al. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly, J. Appl. Phys. 97 (4), 041301, 1-39 (2005) (3) J. Hone, M. Whitney, A. Zettle, Thermal conductivity of single-walled carbon nanotubes, Synthetic Metals, 103, (1-3), 2489-2499 (1999) (4) W. I. Milne, X. Wang, Y. Zhang, et al. CMOS Compatibility of Carbon Nanotubes? IITC Conference, 105-107 (2008) (5) Y. Awano, Carbon nanotube technologies for LSI via interconnects, IEICE Transactions on Electronics, E89C, (11), 1499-1503 (2006) (6) M. Nihei, M. Horibe, A. Kawabata, et al. Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 43, (4B), 1856-1859 (2004) (7) M. Nihei, A. Kawabata, D. Kondo, et al. Electrical properties of carbon nanotube bundles for future via interconnects, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 44, (4A), 1626-1628 (2005) (8) M. Horibe, M. Nihei, D. Kondo, et al. Carbon nanotube growth technologies using tantalum barrier layer for future ULSIs with Cu/low-k interconnect processes, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44, (7A), 5309-5312 (2005) (9) Y. Awano, S. Sato, D. Kondo, et al. Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation, Physica Status Solidi A-Applications and Materials Science, 203, (14), 3611-3616 (2006) (10) M. Suzuki, Y. Ominami, Q. Ngo, et al. Current-induced breakdown of carbon nanofibers, J. Appl. Phys. 101, (11), 114307, 1-5 (2007) (11) Y. Ominami, Q. Ngo, N. P. Kobayashi, et al. Bottom-up sample preparation technique for interfacial characterization of vertically aligned carbon nanofibers, Ultramicroscopy. 106, (7), 597-602 (2006) (12) Q. Ngo, T. Yamada, M. Suzuki, et al. Structural and electrical characterization of carbon nanofibers for interconnect via applications, IEEE Trans. Nanotech. 6, (6), 688-695 (2007) (13) Y. Ominami, Q. Ngo, M. Suzuki, et al. Interface characteristics of vertically aligned carbon nanofibers for interconnect applications, Appl. Phys. Lett. 89, (26), 263114, 1-3 (2006) (14) A. P. Graham, G. S. Duesberg, W. Hoenlein, et al. How do carbon nanotubes fit into the semiconductor roadmap? Applied Physics A-Materials Science & Processing, 80, (6), 1141-1151 (2005) (15) F. Kreupl, A. P. Graham, G. S. Duesberg, et al. Carbon nanotubes in interconnect applications, Microelectronic Engineering, 64, (1-4), 399-408 (2002) (16) W. Hoenlein, F. Kreupl, G. S. Duesberg, et al. Carbon nanotube applications in microelectronics, IEEE Transactions on Components and Packaging Technologies, 27, (4), 629-634 (2004) (17) P. G. Collins, M. Hersam, M. Arnold et al. Current saturation and electrical breakdown in multiwalled carbon nanotubes, Physical Review Letters, 86, (14), 3128-3131 (2001) (18) H. Kitsuki, T. Saito, T. Yamada, et al. Current-carrying capacity of carbon nanofiber interconnects, IITC Conference, 43-45 (2008) (19) Z. Liu, L. Ci, N. Bajwa, et al. Benchmarking of metal-to-carbon nanotube side contact resistance, IITC Conference, 144-146 (2008) (20) J. C. Coiffic, M. Fayolle, H. Le Poche, et al. Realization of via interconnects based on carbon nanotubes, IITC Conference, 153-155 (2008) (21) A. Naeemi and J. D. Meindl, Performance Benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects, IITC Conference, 183-184 (2008) (22) A. Kawabata, S. Sato, T. Nozue, et al. Robustness of CNT via interconnect fabricated by low temperature process over a high-density current, IITC Conference, 237-239 (2008) (23) S. Ijiima, Nature, 354, 56 (1991) (24) R. Saito, T. Takeya, T. Kimura, Raman intensity of single-wall carbon nanotubes, Phys. Rev. B, 57, (7), 4145-4153 (1998) (25) M. F. Yu, O. Lourie, M. J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, (5453), 637-640 (2000) (26) L. H. Chan, K. H. Hong, D. Q. Xiao, et al. Resolution of the binding configuration in nitrogen-doped carbon nanotubes, Phys. Rev. 70, (12), 125408, 1-5 (2004) (27) L. H. Chan, K. H. Hong, D. Q. Xiao et al. Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes, Appl. Phys. Lett. 82, (24), 4334-4336 (2003) (28) M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Raman scattering in fullerenes, Journal of Raman Spectroscopy, 27, (3-4), 351-371 (1996) (29) V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, et al. Shaping carbon nanostructures by controlling the synthesis process, Appl. Phys. Lett. 79, (8), 1178-1180 (2001) (30) V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, et al. Patterned growth of individual and multiple vertically aligned carbon nanofibers, Appl. Phys. Lett. 76, (24), 3555-3557 (2000) (31) H. Cui, O. Zhou, B. R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, J. Appl. Phys. 88, (10), 6072-6074 (2000) (32) A. Slagtern, H. M. Swaan, U. Olsbye, Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts, Catalysis Today, 46, (2-3), 107-115 (1998) (33) G. O. Mallory and J. B. Hajdu, “Electroless Plating : Fundamentals and Applications”, AESF, Orlando, Florida, Chap.1, USA (1990) (34) Y. Yamauchi, T. Yokoshima, T. Momma, et al. Fabrication of magnetic mesostructured nickel-cobalt alloys from lyotropic liquid crystalline media by electroless deposition, J. Mater. Chem. 14, (19), 2935-2940 (2004) (35) C. J. Chen, K. L. Lin, The deposition and crystallization behaviors of electroless Ni-Cu-P deposits, J. Electrochem. Soc. 146, (1), 137-140 (1999) (36) H. W. Xu, J. Brito, O. A. Sadik, Mechanism of stabilizer acceleration in electroless nickel at wirebond substrates, J. Electrochem. Soc. 150, (11) C816-C822 (2003) (37) Q. Xu, L. Zhang, J. Zhu, Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method, J. Phys. Chem. B, 107, (33), 8294-8296 (2003) (38) R. J. C. Brown, P. J. Brewer, M. J. T. Milton, The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces, J. Mater. Chem. 12, (9), 2749-2754 (2002) (39) C. H. Chen, B. H. Chen, L. Hong, Role of Cu2+ as an additive in an electroless nickel-phosphorus plating system: A stabilizer or a codeposit? Chem. Mater. 18, (13), 2959-2968 (2006) (40) X. Yin, L. Hong, B. H. Chen, Role of a Pb2+ stabilizer in the electroless nickel plating system: A theoretical exploration, J. Phys. Chem. B, 108, (30), 10919-10929 (2004) (41) L. M. Abrantes, J. P. Correia, On the mechanism of electroless Ni-P plating, J. Electrochem. Soc. 141, (9), 2356-2360 (1994) (42) G. F. Close, S. Yasuda, B, Paul, et al. Sub-ns delay through multi-wall carbon nanotube local interconnects in a CMOS integrated circuit, IITC Conference, 234-236 (2008) (43) T. K. Tsai, C. C. Chuang, C. G. Chao et al. Growth and field emission of carbon nanofibers on electroless Ni–P alloy catalyst, Diamond and Related Materials 12, 1453–1459 (2003) (44) I. Bedja, S. Hotchandani, P. V. Kamat, Preparation and Photoelectrochemical characterization of thin SnO(2) nanocrystalline semiconductor-films and their sensitization with Bis (2,2’-bipyridine)(2,2’-bipyridine-4,4’-dicarboxylic acid) ruthenium (II) complex, Journal of Physical Chemistry, 98, (15), 4133-4140 (1994)
|