跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/04 14:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃亦翎
研究生(外文):Yi-Ling Huang
論文名稱:紫外光輔助無電鍍鎳磷奈米顆粒催化成長奈米碳纖維內連線
論文名稱(外文):Carbon Nanofiber Interconnect Catalyzed by UV-enhanced Electroless Ni-P Nanoparticles
指導教授:游萃蓉
指導教授(外文):Tri-Rung Yew
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:69
中文關鍵詞:奈米碳纖維無電鍍內連線
相關次數:
  • 被引用被引用:0
  • 點閱點閱:205
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,我們提出利用紫外光照射輔助無電鍍鎳磷(Ni-P)奈米顆粒,作為合成奈米碳纖維催化劑,並於400 C溫度下合成奈米碳纖維,以作為未來積體電路內連線應用。
本研究以無電鍍方式,將尺寸約6-15 nm鎳磷奈米顆粒於28 C下析鍍於溝渠壁,以作為成長奈米碳纖維之催化劑用。此因無電鍍可提供一種催化劑沉積方式,其有能力於小尺寸之連接窗孔洞與SiO2溝渠內形成催化劑,以催化生成奈米碳管或是奈米碳纖維連線。然而,在此研究中,由於奈米碳纖維缺陷和排列不整齊的石墨層結構,使得奈米碳纖維連線電阻率偏高(0.357 ohm-cm),但相信經過進一步改進後,奈米碳纖維連線仍有其應用價值。此奈米碳纖維連線於製程上與現行積體電路製程有相容性,具備應用於未來全奈米碳結構連線之潛力。
目錄
Abstract I
摘要 II
第一章 緒論 1
第二章 文獻回顧 4
2.1 文獻回顧 4
2.1.1 奈米碳管及奈米碳纖維 4
2.1.2 無電鍍法 5
2.1.3 奈米碳基結構連線-奈米碳管、奈米碳纖維 8
第三章 實驗步驟與儀器簡介 10
3.1 實驗步驟 10
3.1.1 基座準備及清洗 10
3.1.2 無電鍍鎳磷奈米顆粒 12
3.1.3 奈米碳纖維連線成長 17
3.1.4 電性量測 19
3.2 量測及分析儀器 21
3.2.1 掃描式電子顯微鏡 21
3.2.2 穿透式電子顯微鏡 23
3.2.3 原子力顯微鏡 25
3.2.4 拉曼光譜 27
第四章 結果與討論 29
4.1無電鍍鎳磷奈米顆粒 29
4.2試片前處理對無電鍍鎳磷之影響 30
4.3 無電鍍溫度對鎳磷奈米顆粒表面形貌之影響 34
4.4 紫外光照射輔助無電鍍鎳磷奈米顆粒 36
4.4.1 無電鍍時間對於催化劑密度與尺寸之影響 36
4.4.2紫外光照射輔助無電鍍反應機制 41
4.5 鎳磷奈米顆粒表面形貌對奈米碳纖維成長之影響 45
4.6奈米碳纖維結構分析 49
4.7 奈米碳纖維連線之電性量測 52
4.8 無電鍍鎳磷顆粒催化奈米碳纖維成長於連接窗孔洞 57
4.9實驗結果與討論 59
第五章 結論 61
參考文獻: 62
(1) Z. Yao, C. L. Kane, C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84 (13), 2941-2944 (2000)
(2) A.V. Melechko, V. I. Merkulov, T. E. McKnight, et al. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly, J. Appl. Phys. 97 (4), 041301, 1-39 (2005)
(3) J. Hone, M. Whitney, A. Zettle, Thermal conductivity of single-walled carbon nanotubes, Synthetic Metals, 103, (1-3), 2489-2499 (1999)
(4) W. I. Milne, X. Wang, Y. Zhang, et al. CMOS Compatibility of Carbon Nanotubes? IITC Conference, 105-107 (2008)
(5) Y. Awano, Carbon nanotube technologies for LSI via interconnects, IEICE Transactions on Electronics, E89C, (11), 1499-1503 (2006)
(6) M. Nihei, M. Horibe, A. Kawabata, et al. Simultaneous formation of multiwall carbon nanotubes and their end-bonded ohmic contacts to Ti electrodes for future ULSI interconnects, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 43, (4B), 1856-1859 (2004)
(7) M. Nihei, A. Kawabata, D. Kondo, et al. Electrical properties of carbon nanotube bundles for future via interconnects, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 44, (4A), 1626-1628 (2005)
(8) M. Horibe, M. Nihei, D. Kondo, et al. Carbon nanotube growth technologies using tantalum barrier layer for future ULSIs with Cu/low-k interconnect processes, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 44, (7A), 5309-5312 (2005)
(9) Y. Awano, S. Sato, D. Kondo, et al. Carbon nanotube via interconnect technologies: size-classified catalyst nanoparticles and low-resistance ohmic contact formation, Physica Status Solidi A-Applications and Materials Science, 203, (14), 3611-3616 (2006)
(10) M. Suzuki, Y. Ominami, Q. Ngo, et al. Current-induced breakdown of carbon nanofibers, J. Appl. Phys. 101, (11), 114307, 1-5 (2007)
(11) Y. Ominami, Q. Ngo, N. P. Kobayashi, et al. Bottom-up sample preparation technique for interfacial characterization of vertically aligned carbon nanofibers, Ultramicroscopy. 106, (7), 597-602 (2006)
(12) Q. Ngo, T. Yamada, M. Suzuki, et al. Structural and electrical characterization of carbon nanofibers for interconnect via applications, IEEE Trans. Nanotech. 6, (6), 688-695 (2007)
(13) Y. Ominami, Q. Ngo, M. Suzuki, et al. Interface characteristics of vertically aligned carbon nanofibers for interconnect applications, Appl. Phys. Lett. 89, (26), 263114, 1-3 (2006)
(14) A. P. Graham, G. S. Duesberg, W. Hoenlein, et al. How do carbon nanotubes fit into the semiconductor roadmap? Applied Physics A-Materials Science & Processing, 80, (6), 1141-1151 (2005)
(15) F. Kreupl, A. P. Graham, G. S. Duesberg, et al. Carbon nanotubes in interconnect applications, Microelectronic Engineering, 64, (1-4), 399-408 (2002)
(16) W. Hoenlein, F. Kreupl, G. S. Duesberg, et al. Carbon nanotube applications in microelectronics, IEEE Transactions on Components and Packaging Technologies, 27, (4), 629-634 (2004)
(17) P. G. Collins, M. Hersam, M. Arnold et al. Current saturation and electrical breakdown in multiwalled carbon nanotubes, Physical Review Letters, 86, (14), 3128-3131 (2001)
(18) H. Kitsuki, T. Saito, T. Yamada, et al. Current-carrying capacity of carbon nanofiber interconnects, IITC Conference, 43-45 (2008)
(19) Z. Liu, L. Ci, N. Bajwa, et al. Benchmarking of metal-to-carbon nanotube side contact resistance, IITC Conference, 144-146 (2008)
(20) J. C. Coiffic, M. Fayolle, H. Le Poche, et al. Realization of via interconnects based on carbon nanotubes, IITC Conference, 153-155 (2008)
(21) A. Naeemi and J. D. Meindl, Performance Benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects, IITC Conference, 183-184 (2008)
(22) A. Kawabata, S. Sato, T. Nozue, et al. Robustness of CNT via interconnect fabricated by low temperature process over a high-density current, IITC Conference, 237-239 (2008)
(23) S. Ijiima, Nature, 354, 56 (1991)
(24) R. Saito, T. Takeya, T. Kimura, Raman intensity of single-wall carbon nanotubes, Phys. Rev. B, 57, (7), 4145-4153 (1998)
(25) M. F. Yu, O. Lourie, M. J. Dyer, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 287, (5453), 637-640 (2000)
(26) L. H. Chan, K. H. Hong, D. Q. Xiao, et al. Resolution of the binding configuration in nitrogen-doped carbon nanotubes, Phys. Rev. 70, (12), 125408, 1-5 (2004)
(27) L. H. Chan, K. H. Hong, D. Q. Xiao et al. Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes, Appl. Phys. Lett. 82, (24), 4334-4336 (2003)
(28) M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Raman scattering in fullerenes, Journal of Raman Spectroscopy, 27, (3-4), 351-371 (1996)
(29) V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, et al. Shaping carbon nanostructures by controlling the synthesis process, Appl. Phys. Lett. 79, (8), 1178-1180 (2001)
(30) V. I. Merkulov, D. H. Lowndes, Y. Y. Wei, et al. Patterned growth of individual and multiple vertically aligned carbon nanofibers, Appl. Phys. Lett. 76, (24), 3555-3557 (2000)
(31) H. Cui, O. Zhou, B. R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, J. Appl. Phys. 88, (10), 6072-6074 (2000)
(32) A. Slagtern, H. M. Swaan, U. Olsbye, Catalytic partial oxidation of methane over Ni-, Co- and Fe-based catalysts, Catalysis Today, 46, (2-3), 107-115 (1998)
(33) G. O. Mallory and J. B. Hajdu, “Electroless Plating : Fundamentals and Applications”, AESF, Orlando, Florida, Chap.1, USA (1990)
(34) Y. Yamauchi, T. Yokoshima, T. Momma, et al. Fabrication of magnetic mesostructured nickel-cobalt alloys from lyotropic liquid crystalline media by electroless deposition, J. Mater. Chem. 14, (19), 2935-2940 (2004)
(35) C. J. Chen, K. L. Lin, The deposition and crystallization behaviors of electroless Ni-Cu-P deposits, J. Electrochem. Soc. 146, (1), 137-140 (1999)
(36) H. W. Xu, J. Brito, O. A. Sadik, Mechanism of stabilizer acceleration in electroless nickel at wirebond substrates, J. Electrochem. Soc. 150, (11) C816-C822 (2003)
(37) Q. Xu, L. Zhang, J. Zhu, Controlled growth of composite nanowires based on coating Ni on carbon nanotubes by electrochemical deposition method, J. Phys. Chem. B, 107, (33), 8294-8296 (2003)
(38) R. J. C. Brown, P. J. Brewer, M. J. T. Milton, The physical and chemical properties of electroless nickel-phosphorus alloys and low reflectance nickel-phosphorus black surfaces, J. Mater. Chem. 12, (9), 2749-2754 (2002)
(39) C. H. Chen, B. H. Chen, L. Hong, Role of Cu2+ as an additive in an electroless nickel-phosphorus plating system: A stabilizer or a codeposit? Chem. Mater. 18, (13), 2959-2968 (2006)
(40) X. Yin, L. Hong, B. H. Chen, Role of a Pb2+ stabilizer in the electroless nickel plating system: A theoretical exploration, J. Phys. Chem. B, 108, (30), 10919-10929 (2004)
(41) L. M. Abrantes, J. P. Correia, On the mechanism of electroless Ni-P plating, J. Electrochem. Soc. 141, (9), 2356-2360 (1994)
(42) G. F. Close, S. Yasuda, B, Paul, et al. Sub-ns delay through multi-wall carbon nanotube local interconnects in a CMOS integrated circuit, IITC Conference, 234-236 (2008)
(43) T. K. Tsai, C. C. Chuang, C. G. Chao et al. Growth and field emission of carbon nanofibers on electroless Ni–P alloy catalyst, Diamond and Related Materials 12, 1453–1459 (2003)
(44) I. Bedja, S. Hotchandani, P. V. Kamat, Preparation and Photoelectrochemical characterization of thin SnO(2) nanocrystalline semiconductor-films and their sensitization with Bis (2,2’-bipyridine)(2,2’-bipyridine-4,4’-dicarboxylic acid) ruthenium (II) complex, Journal of Physical Chemistry, 98, (15), 4133-4140 (1994)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top