(44.192.112.123) 您好!臺灣時間:2021/03/09 00:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張博堯
研究生(外文):Po-Yao Chang
論文名稱:Impurity-InducedConductanceAnomalyinZigzagCarbonNanotubes
指導教授:林秀豪
指導教授(外文):Hsiu-Hau Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:48
中文關鍵詞:奈米碳管缺陷破損雜質傳導電導奇異有趣的
外文關鍵詞:Carbon nanotubesdefectimpurityconductancetransport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
Impurities in carbon nanotubes give rise to rich physics due to the honeycomb lattice structure. We concentrate on the conductance through a point-like defect in metallic zigzag carbon nanotube via the Landauer-B‥uttiker approach. At low bias, the conductance is suppressed due to the presence of an additional impurity state existing only on one of the sublattices. In consequence, the suppression is exactly half of the perfect conductance without impurity. Furthermore, there exists a transport resonance at larger bias where the perfect conductance is recovered as if the impurity were absent. Implications of these conductance
anomalies are elaborated and experimental detections in realistic carbon nanotubes are also discussed.
1 Introduction
2 Impurity states in zigzag carbon nanotubes
2.1 Partial Fourier transformation application in zigzag carbon nanotubes
2.2 Generalized Bloch theory
2.3 Electronic property in zigzag nanotubes
2.4 Speci‾c cases in zigzag nanotubes
2.4.1 Single vacancy defect in zigzag nanotubes
2.4.2 Single point-like defect in semiconducting zigzag nan-
otubes
3 Transport properties in metallic zigzag carbon nanotubes
with single defect
3.1 Landauer-Buttiker formula
3.2 Friedel sum rule
3.3 Conductance for metallic zigzag nanotube with single defect in low energy regime
3.4 Conductance, Backward conductance and scattering phase analysis
4 Theoretical analysis of conductance and phase
4.1 Traditional scattering theory
4.1.1 S matrix and T matrix
4.1.2 Optical theorem
4.2 Tunneling regime for single dot problem
4.3 Scattering regime for single channel one dimensional case
5 Conclusion and outlook
[1]Kai Nordlund and Pertti Hakonen, Nanotubes: Controlling conductance. Nature Materials 4, 514-515 (2005).
[2] Ayako Hashimoto, et al., Direct evidence for atomic defects in graphene layers. Nature 430, 870-873 (2004).
[3] W. Claussl, et al., Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy. Europhysics Letters 47(5), 601 (1999).
[4] Hajin Kim, et al., Direct Observation of Localized Defect States in Semiconductor Nanotube Junctions. Phys. Rev. Lett. 90, 216107(2003).
[5] Masa Ishigami, et al., Identifying Defects in Nanoscale Materials. Phys. Rev. Lett. 93, 196803 (2004).
[6] Brett R. Goldsmith, et al., Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes. Science 315, 77 (2007).
[7] Brett R. Goldsmith, et al., Monitoring Single-Molecule Reactivity on a Carbon Nanotube. Nano Letters vol.8, no.1, 189-194 (2008).
[8] Yuwei Fan, et al., Identifying and counting point defects in carbon nanotubes. Nature Materials 4, 906-911 (2005).
[9] Vitor M. Pereira, et al., Disorder Induced Localized States in Graphene.
Phys. Rev. Lett. 96, 036801 (2006).
[10] Zhen Yao, et al., Carbon nanotube intramolecular junctions. Nature 402, 273-276 (1999).
[11] L. Chico, et al., Pure Carbon Nanoscale Devices: Nanotube Heterojunctions. Phys. Rev. Lett. 76, 971-974 (1996).47
[12] Marc Bockrath, et al., Resonant Electron Scattering by Defects in Single-Walled Carbon Nanotubes. Science 291, 12 (2001).
[13] A. V. Krasheninnikov and F. Banhart, Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials 6, 723-733 (2007).
[14] H. J. Choi, et al., Defects, Quasibound States, and Quantum Conductance in Metallic Carbon Nanotubes. Phys. Rev. Lett. 84, 13 (2000).
[15] M. Pustilnik and L. I. Glazman, Kondo ERect in Real Quantum Dots.Phys. Rev. Lett. 87, 216601 (2001).
[16] Lieb,E. H., Two Theorems on Hubbard Model. Phys. Rev. Lett. 62,1201-1204 (1989).
[17] P.O. Lehtinen, et al., Magnetic Properties and DiRusion of Adatoms on a Graphene Sheet. Phys. Rev. Lett. 91, 017202 (2003).
[18] Oleg V. Yazyev and Lothar Helm, Defect-induced magnetism in graphene. Phys. Rev. B 75, 125408 (2007).
[19] J.-H. Chen ,et al., Charged-impurity scattering in graphene. Nature Physics 4, 377-381 (2008). 48
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔