(54.236.58.220) 您好!臺灣時間:2021/03/08 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝維哲
論文名稱:以EHD技術增強熱傳之研究
論文名稱(外文):Heat Transfer Enhanced by EHD Technology
指導教授:許文震許文震引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:電液動力學電暈放電熱對流係數增強
外文關鍵詞:electrohydrodynamicscorona windenhanced convection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:175
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討使用無動件的EHD (electrohydrodynamics) 技術來改善自然對流下的散熱能力,將電極放置在鰭片外,外加直流高壓電場,施加電壓0∼18kV的實驗範圍內,探討電極形狀如何設計才是一根良好的電極,在本實驗中,電極形狀為尖形時,電荷密度集中導致庫侖力較大,產生平均風速高達1.4m/s,熱對流係數可提升為自然對流係數的2.6倍,同時初始電壓降低許多,火花電壓也隨之下降。若電極形狀為圓形時,熱傳增強效果均不如平面電極。另外也探討溼度對熱傳性能的影響,在低相對溼度為45%的情狀之下,熱對流係數可提升為自然對流係數的3.2倍,其中溼度對負電暈影響比正電暈大,本研究也探討電極極性、電極與鳍片之間的距離、電極直徑、電極數目、排列等等因素對EHD散熱效果的影響。也探討初始電壓、火花電壓之間的操縱範圍電壓的影響因素。實驗結果指出,在負電暈、電極距離大、電極直徑小、電極形狀為尖形、電極數目多、低溼度的情狀下對於熱傳效果更佳。
摘要
Abstract
誌謝
目錄
圖目錄
第一章 緒論
1-1 前言
1-2 文獻回顧
1-2-1 電暈現象之文獻回顧
1-2-2 EHD散熱應用之文獻回顧
1-2-3 EHD溼度影響之文獻回顧
第二章 原理簡介
2-1 概論
2-2 EHD原理簡介
2-3電暈現象
2-3-1 離子生成
2-3-2 正電暈的離子運動行為
2-3-3 負電暈的離子運動行為
2-3-4 粒子間的碰撞行為
2-4影響火花電壓的因素
2-5 氣壓、溫度、溼度對氣體絕緣破壞的影響
第三章 實驗設備及方法
3-1 實驗設備
3-1.1實驗測試系統
3-1.2 熱電偶校正
3-1.3 加熱片校正
3-1.4 濕度計校正
3-1.5 自然對流校正
3-2 實驗與分析方法
3-2.1 自然對流熱傳實驗與分析
3-2.2 EHD實驗與分析
第四章 實驗結果與討論
4-1 電場極性對熱傳性能的影響
4-2電極距離對熱傳性能的影響
4-3電極直徑對熱傳性能的影響
4-4電極幾何形狀對熱傳性能的影響
4-5雙根電極與電極間距對熱傳性能的影響
4-6相對濕度對熱傳性能的影響
4-7 初始電壓與火花電壓的影響
第五章 結論與未來發展
5-1 結論
5-2 未來發展方向
第六章 參考文獻
1.范盛然, “低溫環境下鰭片結霜研究,” 碩士論文, 動力機械工程學系, 國立清華大學 (2003).

2.Robinson, M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, V. 80, pp. 143-150 (1961).

3.Hauksbee, F., “Physico-Mechnical Experiments on Various Subjects,” 1st ed., London, pp. 46-47 (1719).

4.Stuetzer, O. M., “Ion Drag Pressure Generation,” Journal of Applied Physics, V. 30, N. 7, pp. 984-994 (1959).

5.Robinson, M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, V. 80, pp. 143-150 (1961).

6.McDonald, J.R., Smith W.B. and Spencer H.W., “A Mathematical Model for Calculating Electrical Conditions in Wire-Duct Electrostatic Precipitation Devices,” Journal of Applied Physics, V. 48, N. 6, pp2231-2243 (1977).

7.Bonder, H., and F. Bastien, “Effect of Neutral Fluid Velocity on Direct Conversion from Electrical to Fluid Kinetic Energy in an Electro-Fluid-Dynamics (EFD) Drive,” Journal of Physics D: Applied Physics, V. 19, pp. 1657-1663 (1986).

8.Lowke , J. J. and R. Morrow, “Theory of Electric Corona including the Role of Plasma Chemistry,” Pure and Applied Chemistry, V.66, N.6, pp.1287-1294 (1991).

9.Chang, J. S., P. A. Lawless and T. Yamamoto, “Corona Discharge Processes,” IEEE Transactions on Plasma Science, V.19, N.6, pp.1152-1166 (1991).

10.Lai, F. C. and Sharma R.K., “EHD-Enhanced Drying with Multiple Needle Electrode,” Journal of Electrostatics, V. 63, pp.223-237 (2005).

11.Hiroyuki Kawamoto and Shinjiro Umezu, “Electrohydrodynamic Deformation of Water Surface in a Metal Pin to Water Plate Corona Discharge System, ”Journal of Physics, pp.887-894 (2005).

12.O’Brien, R. J. and A. J. Shine, “Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection,” Journal of Heat Transfer, V. 89, pp. 114-116 (1967).

13.Kibler, K. G. and H. G. Carter Jr, “Electrocooling in Gases,” Journal of Applied Physics, V. 45, No. 10, pp. 4436-4440 (1974).

14.Mitchell, A. S. and L. E. Williams, “Heat Transfer by the Corona Wind Impinging on a Plate Surface,” Journal of Electrostatics, V. 5, pp. 309-324 (1978).

15.Ohadi, M. M., D. A. Nelson and S. Zia, “Heat Transfer Enhancement of Laminar and Turbulent Pipe Flow via Corona Discharge,” International Journal of Heat and Mass Transfer, V. 34, pp. 1175-1184 (1991).

16.Owsenek, B. L., J. Seyed-Yagoobi and R. H. Page, “Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plate,” Journal of Heat Transfer, V. 119, pp. 309-315 (1995).

17.Owsenek, B. L. and J. Seyed-Yagoobi, “Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement through Wire-Plate Corona Discharge,” Journal of Heat Transfer, V. 119, pp. 604-610 (1997).

18.Bhattacharyya, S. and A. Peterson, “Corona Wind-Augmented Natural Convection – Part 1: Single Electrode Studies,” Journal of Enhancement Heat Transfer, V. 9, pp. 209-219 (2002).

19.Kasayapanand, N. and T. Kiatsiriroat, “EHD Enhance Heat Transfer in Wavy Channel,” International Communications in Heat and Mass Transfer, V. 32, pp.809-821 (2005).

20.Zhao, L. and K. Adamiak, “EHD Flow in Air Produced by Electric Corona Discharge in Pin-Plate Configuration,” Journal of Electrostatics, V. 63, pp. 337-350 (2005).

21.Boutlendj N. L., Allen, H. A. Lightfoot and R. B. Neville, “Positive DC Corona and Sparkover in Short and Long Rod-plane Gaps under Variable Humidity Conditions,” IEE Proceedings-A, V. 138, No. 1, pp. 31-36 (1991).

22.L. Fouad and S. Elhazek, “Effect of Humidity on Positive Corona Discharge in a Three Electrode System, ”Journal of Electrostatics, V.35, pp. 21-30 (1995).

23.I. A. Metwally, “Factors Affecting Corona on Twin-point Gaps under DC and AC HV, ”IEEE , pp.544-553(1996).

24.P. A. Calva and F. P. Espino C., “Threshold Curves of the Various Modes of Corona Discharge in Atmospheric Air,”IEEE, pp.612-615 (1997).

25.P. A. Calva and F. P. Espino C., “Effect of the Humidity in the Ionic Mobility in Reduced Air-Density,” IEEE , pp. 508-511 (1998).

26.Luc Léger, Eric Moreau, and Gérard G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Transaction on Industry Applications, V. 38, No. 6, pp. 1478-1485 (2002).

27.李幸勇, “陣列式針狀電極應用於EHD熱傳增強技術,” 碩士論文,動力機械工程學系, 國立清華大學 (2005).

28.Junhong, C., “Direct-Current Corona Enhanced Chemical Reactions”, Phd Thesis, University of Minnesota, USA, (August 2002).

29.Evans, R. W. and I. I. Inculet, “The Radius of the Visible Ionization Layer for Positive and Negative Coronas,” IEEE Transactions on Industry Applications, V. IA-14, No. 6, pp. 523-525 (1978).

30.Chapman, B., “Glow Discharge Processes :/Sputtering and Plasma Etching /,” Wiley, New York (1980).

31.顏世雄, 粘孝先, 溫坤禮 ,“高壓放電工程,”全華科技圖書股份有限公司.

32.財團法人工業技術研究院,國家度量衡標準實驗室.

33.Radiziemska, E. and W. M. Lewandowski, “The Effect of Plate Size on the National Convective Heat Transfer Intensity of Horizontal Surfaces,” Heat Transfer Engineering, V.26, pp.50-53 (2005).

34.Al-Arabi, M. and M. K. El-Riedy, “Natural Convection Heat Transfer from Isothermal Horizontal Plates of Different Shapes,” International Journal of Heat and Mass Transfer, V.19, pp.1399-1404 (1974) .

35.張兆秋, “鰭片底面裝置針狀電極之EHD增強散熱技術研究,” 碩士論文,動力機械工程學系, 國立清華大學 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔