跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王仁杰
研究生(外文):Jen-Chieh Wang
論文名稱:氧化亞鐵硫桿菌代謝溶液中之雷射輔助金屬銅沉積
論文名稱(外文):Laser-Assisted Copper Deposition from Thiobacillus ferrooxidans (T.f.) Metabolite
指導教授:賀陳弘賀陳弘引用關係
指導教授(外文):Hong Hocheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:50
中文關鍵詞:雷射金屬沉積無光罩製程沉積氧化亞鐵硫桿菌代謝溶液
外文關鍵詞:lasermetal depositionmaskless fabricationdepositionT.f.metabolite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
大部分的微結構是經由光微影技術所製造而成,其製程需經過一道一道的曝光顯影蝕刻過程,其中的曝光步驟便需要藉由事先製作好的光罩來定義所需的圖案。為了節省製程的時間及成本,無光罩技術應運而生。所需要的結構可藉由雷射在試片上掃描過後而取得,亦可用來修補損壞的結構。本研究更進一步的探尋於氧化亞鐵硫桿菌代謝溶液中之雷射輔助金屬銅沉積的可行性。藉由長工作距離的物鏡將1064 奈米紅外光波長的釹-釔石榴石雷射聚焦於銅試片上,沉積出所需之結構,此以雷射輔助銅沉積的過程為一光熱反應。此一創新的金屬微結構成型技術結合氧化亞鐵硫桿菌代謝溶液蝕刻及雷射引導沉積兩種特性,原先被氧化亞鐵硫桿菌代謝溶液所蝕刻而產生的二價銅離子在其雷射所走過的軌跡上再度被還原成金屬銅。實驗後發現金屬銅沉積量〈線寬,厚度〉與雷射功率,掃描速度的倒數及掃描重複次數間存在著正相關性。
摘要 I
Abstract II
Contents III
List of Figures IV
List of Tables VII
Chapter 1 Introduction 1
1. 1 Background 1
1. 2 Motivation and objective of study 2
1. 3 Literature review 2
1. 3. 1 Laser assisted chemical liquid phase deposition on polyimide (PI) 3
1. 3. 2 Laser assisted chemical liquid phase deposition on glass 4
1. 3. 3 Laser assisted chemical liquid phase deposition on semiconductor 5
Chapter 2 Experimental Method 16
2. 1 Working medium 16
2. 2 Optical system setup 16
2. 3 Specimen preparation 17
2. 4 Processing parameters 17
Chapter 3 Results and Discussions 25
3. 1 Deposit composition 25
3. 2 Thickness and line width 25
3. 2. 1 Effects of scan repetitions 26
3. 2. 2 Effects of scanning speed 26
3. 2. 3 Effects of laser power 27
3. 3 Dimensional analysis 27
Chapter 4 Conclusion and Future Work 48
References 49
[1] M. L. Griffith, D. M. Keicher, C. L. Atwood, J. A. Romero, J. E. Smugeresky, L. D. Harwell, D. L. Greene, “Free form fabrication of metallic components using laser engineered net shaping (LENS),” Proceedings of the Solid Freeform Fabrication Symposium, August 12-14, (1996) Austin, TX, p. 125.
[2] J. J. Beaman and C. R. Deckard, “Selective laser sintering with assisted power handling,” US patent No. 4938816, June 1990.
[3] P. F Jacobs, “Rapid Prototyping and Manufacturing: Fundamentals of StereoLithography,” Society of Manufacturing Engineers, Dearborn, MI, 1992.
[4] S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys. 52 (11), (1981) pp. 6501-6505.
[5] D. B�黷erle, “Laser Processing and Chemistry,” Springer, Heidelberg, 1996.
[6] M. Wehner, F. Legewie, B. Theisen, E. Beyer, “Direct writing of gold and copper lines from solutions,” Appl. Surf. Sci., 106, (1996) pp. 406-411.
[7] K. Kord�龍, K. Bali, S. Lepp�豔uori, A. Uusim�驥i, L. N�鴨ai, “ Laser direct writing of copper on polyimide surfaces from solution, “ Appl. Surf. Sci. , 154-155, (2000) pp. 399-404.
[8] K. Kord�龍, L. N�鴨ai, G. Galb�駢s, A. Uusim�驥i, S. Lepp�豔uori, K. Bali, “ Reaction dynamics of CW Ar+ laser induced copper direct writing from liquid electrolyte on polymide substrates, “ Appl. Surf. Sci. , 158, (2000) pp. 127-133.
[9] K. Kord�龍, J. B�翳�臃i, R. Vajitai, L. N�鴨ai, S. Lepp�豔uori, A. Uusim�驥i, K. Bali, Thomas F. George, G. Galb�駢s, F. Ign�駢z, P. Moilanen, “ Laser-assisted metal deposition from liquid-phase precursors on polymers, ” Appl. Surf. Sci. , 172, (2001) pp. 178-189.
[10] X. C. Wang, H. Y. Zheng, G. C. Lim, “ Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser, ” Appl. Surf. Sci., 200, (2002) pp. 165-171.
[11] L. Mini, C. Giaconia, C. Arnone, “ Copper patterning on dielectrics by laser writing in liquid solution, ” Appl. Phys. Lett., 64 (25), (1994) pp. 3404-3406.
[12] Zs. Geretovszky, L. Kelemen, K. Bali, T. Sz�宁�聲yi, ” Kinetic model for scanning laser-induced deposition from the liquid phase, ” Appl. Surf. Sci., 86, (1995) pp. 494-499.
[13] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-assisted metal deposition from CuSO4-based electrolyte solution, “ Laser Phys. Lett., 4, No.2, (2007) pp. 163-167.
[14] A. A. Manshina, A. V. Povolotskiy, T. Yu. Ivanova, A. V. Kurochkin, Yu. S. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ Laser-induced copper deposition on the surface of an oxide glass from an electrolyte solution, “ Glass Physics and Chemistry, 33, No.3, (2007) pp. 209-213.
[15] A. Manshina, A. Povolotskiy, T. Ivanova, A. Kurochkin, Yu. Tver’yanovich, D. Kim, M. Kim, S. C. Kwon, “ CuCl2-based liquid electrolytr precursor for laser-induced metal deposition, “ Laser Phys. Lett., 4, No.3, (2007) pp. 242-246.
[16] R. F. Karlicek, V. M. Donnelly, G. J. Collins, “Laser-induced metal deposition on InP,” J. Appl. Phys., 53 (2), (1982) pp.1084-1090.
[17] L. N�鴨ai, I. Hevesi, F. V. Bunkin, B. S. Luk’yanchuk, M. R. Brook, G. A. Shafeev, Daniel A. Jelski, Z. C. Wu, Thomas F. George, “ Laser-induced metal deposition on semiconductors from liquid electrolytes,” Appl. Phys. Lett., 54 (8), (1989) pp. 736-738.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top