[1] M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices," Physical Review Letters 61, 2472-2475 (1988).
[2] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, "Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange," Physical Review B 39, 4828-4830 (1989).
[3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science 294, 1488-1495 (2001).
[4] I. Zutic, J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," Reviews of Modern Physics 76, 323-410 (2004).
[5] 彭獻毅,CoSi1-xGex之熱電性質研究,碩士論文,國立東華大學,民國九十四年。[6] B. M. Zawilski, R. T. Littleton, and T. M. Tritt, "Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples," Review of Scientific Instruments 72, 1770-1774 (2001).
[7] Y. Yang, and M. Asheghi, "Temperature mapping of metal Interconnects using scanning thermoreflectance microscope," IEEE, (2005).
[8] L. Lu, W. Yi, and D. L. Zhang, "3 omega method for specific heat and thermal conductivity measurements," Review of Scientific Instruments 72, 2996-3003 (2001).
[9] 饒達仁、劉勇志、曾明溪與簡恆傑,「薄膜熱傳導性能量測方法研究 - 3ω method」,中華民國第二十七屆全國力學會議 (2003)。
[10] D. G. Cahill, "Thermal conductivity measurement from 30 to 750 K: The 3 omega method (vol 61, pg 802, 1990)," Review of Scientific Instruments 73, 3701-3701 (2002).
[11] W. Liu, and M. Asheghi, "Phonon-boundary scattering in ultrathin single-crystal silicon layers," Applied Physics Letters 84, 3819-3821 (2004).
[12] W. J. Liu, and M. Asheghi, "Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures," Journal of Applied Physics 98, (2005).
[13] W. J. Liu, and M. Asheghi, "Thermal conductivity measurements of ultra-thin single crystal silicon layers," Journal of Heat Transfer-Transactions of the Asme 128, 75-83 (2006).
[14] M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, "Thermal conduction in doped single-crystal silicon films," Journal of Applied Physics 91, 5079 (2002).
[15] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, "Nanoscale thermal transport," Journal of Applied Physics 93, 793-818 (2003).
[16] T. Borca-Tasciuc, W. L. Liu, J. L. Liu, T. F. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M. S. Dresselhaus, "Thermal conductivity of symmetrically strained Si/Ge superlattices," Superlattices and Microstructures 28, 199-206 (2000).
[17] T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, "Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)(1)/(AlSb)(11) digital-alloy superlattices," Journal of Applied Physics 92, 4994-4998 (2002).
[18] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson, and J. M. D. Coey, "Giant magnetoresistive effects in a single element magnetic thin film," Physical Review Letters 77, 1580-1583 (1996).
[19] T. Taniyama, I. Nakatani, T. Namikawa, and Y. Yamazaki, "Resistivity due to domain walls in Co zigzag wires," Physical Review Letters 82, 2780-2783 (1999).
[20] T. Taniyama, I. Nakatani, T. Yakabe, and Y. Yamazaki, "Control of domain structures and magnetotransport properties in patterned ferromagnetic wires," Applied Physics Letters 76, 613-615 (2000).
[21] Z. Y. Zhang, and S. J. Xiong, "Domain wall distribution and magnetoresistance of a zigzag magnetic wire," Physical Review B 67, (2003).
[22] D. Buntinx, S. Veldeman, A. Volodin, and C. Van Haesendonck, "Ferromagnetic domain configuration and electrical resistance of Co zigzag wires," Journal of Magnetism and Magnetic Materials 242, 1257-1260 (2002).
[23] D. Buntinx, A. Volodin, and C. V. Haesendonck, "Combination of magnetic force microscopy with in situ magnetoresistance measurements," Journal of Applied Physics 92, 1014-1017 (2002).
[24] Y. Yang, R. M. White, and M. Asheghi, "Thermal characterization of Cu/CoFe multilayer for giant magnetoresistive head applications," Journal of Heat Transfer-Transactions of the Asme 128, 113-120 (2006).
[25] Y. Yang, J. G. Zhu, R. M. White, and M. Asheghi, "Field-dependent thermal and electrical transports in Cu/CoFe multilayer," Journal of Applied Physics 99, (2006).
[26] G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, New Year, 2005.
[27] J. F. Shackelford, and W. Alexander, CRC Materials Science and Engineering Handbook, 3rd Ed. CRC Press 2001.
[28] Z. H. Wei, and M. F. Lai, "Mechanisms of magnetization reversals in elliptical thin films," Journal of Applied Physics 101, 09F515 (2007).
[29] MatWeb, (n.d.), Alloy 52 Nickel Iron Alloy, Apr 29, 2008, http://asia.matweb.com/search/SpecificMaterial.asp?bassnum=NCALZ00.