跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 13:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何東峰
論文名稱:奈米微磁結構對於熱傳係數影響之研究
論文名稱(外文):Effect of Nano-scaled Magnetic Structure to Thermal Conductivity
指導教授:衛榮漢
指導教授(外文):Zung-Hang Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:59
中文關鍵詞:熱傳導係數奈米磁結構磁壁
相關次數:
  • 被引用被引用:1
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
致謝 I
摘要 II
英文摘要 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章、 前言 1
第二章、 理論基礎與文獻回顧 3
2.1 物質的熱傳導係數 3
2.1.1 熱傳導係數之直接測量 3
2.1.2 熱傳導係數間接測量 5
2.1.2.1 自發熱、電阻檢溫熱傳導係數測量 7
2.2 熱傳導的理論機制 8
2.2.1 晶格振盪─聲子 9
2.2.2 晶體的熱傳導 10
2.2.3 聲子散射對熱傳的影響 11
2.2.3.1 溫度 11
2.2.3.2 尺寸 13
2.2.3.3 其他散射機制 14
2.2.4 非晶固體中的原子振動 15
2.3 磁性材料 16
2.3.1 自旋波 16
2.3.2 磁阻 20
2.3.3 磁壁 21
2.3.3.1 磁壁電阻 22
2.3.3.2 磁壁幾何異向性 23
2.4 巨磁阻結構之熱傳導係數 25
第三章、 研究方法 27
3.1 磁性結構製作 27
3.2 磁化分佈觀測 31
3.3 磁阻測量 32
3.3.1 增量測量模式 34
3.3.2 脈衝測量模式 36
3.4 溫度電阻係數測量 36
3.5 熱傳導係數測量 36
第四章、 實驗結果 39
4.1 樣品結構 39
4.2 磁性材料磁化分佈 41
4.3 垂直與平行磁阻 45
4.4 材料電阻溫度係數 52
4.5 熱傳導係數 52
第五章、 結論 57
參考文獻 59
[1] M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices," Physical Review Letters 61, 2472-2475 (1988).
[2] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, "Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange," Physical Review B 39, 4828-4830 (1989).
[3] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science 294, 1488-1495 (2001).
[4] I. Zutic, J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," Reviews of Modern Physics 76, 323-410 (2004).
[5] 彭獻毅,CoSi1-xGex之熱電性質研究,碩士論文,國立東華大學,民國九十四年。
[6] B. M. Zawilski, R. T. Littleton, and T. M. Tritt, "Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples," Review of Scientific Instruments 72, 1770-1774 (2001).
[7] Y. Yang, and M. Asheghi, "Temperature mapping of metal Interconnects using scanning thermoreflectance microscope," IEEE, (2005).
[8] L. Lu, W. Yi, and D. L. Zhang, "3 omega method for specific heat and thermal conductivity measurements," Review of Scientific Instruments 72, 2996-3003 (2001).
[9] 饒達仁、劉勇志、曾明溪與簡恆傑,「薄膜熱傳導性能量測方法研究 - 3ω method」,中華民國第二十七屆全國力學會議 (2003)。
[10] D. G. Cahill, "Thermal conductivity measurement from 30 to 750 K: The 3 omega method (vol 61, pg 802, 1990)," Review of Scientific Instruments 73, 3701-3701 (2002).
[11] W. Liu, and M. Asheghi, "Phonon-boundary scattering in ultrathin single-crystal silicon layers," Applied Physics Letters 84, 3819-3821 (2004).
[12] W. J. Liu, and M. Asheghi, "Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures," Journal of Applied Physics 98, (2005).
[13] W. J. Liu, and M. Asheghi, "Thermal conductivity measurements of ultra-thin single crystal silicon layers," Journal of Heat Transfer-Transactions of the Asme 128, 75-83 (2006).
[14] M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, "Thermal conduction in doped single-crystal silicon films," Journal of Applied Physics 91, 5079 (2002).
[15] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, "Nanoscale thermal transport," Journal of Applied Physics 93, 793-818 (2003).
[16] T. Borca-Tasciuc, W. L. Liu, J. L. Liu, T. F. Zeng, D. W. Song, C. D. Moore, G. Chen, K. L. Wang, M. S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M. S. Dresselhaus, "Thermal conductivity of symmetrically strained Si/Ge superlattices," Superlattices and Microstructures 28, 199-206 (2000).
[17] T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgaftman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra, and G. Chen, "Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)(1)/(AlSb)(11) digital-alloy superlattices," Journal of Applied Physics 92, 4994-4998 (2002).
[18] J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson, and J. M. D. Coey, "Giant magnetoresistive effects in a single element magnetic thin film," Physical Review Letters 77, 1580-1583 (1996).
[19] T. Taniyama, I. Nakatani, T. Namikawa, and Y. Yamazaki, "Resistivity due to domain walls in Co zigzag wires," Physical Review Letters 82, 2780-2783 (1999).
[20] T. Taniyama, I. Nakatani, T. Yakabe, and Y. Yamazaki, "Control of domain structures and magnetotransport properties in patterned ferromagnetic wires," Applied Physics Letters 76, 613-615 (2000).
[21] Z. Y. Zhang, and S. J. Xiong, "Domain wall distribution and magnetoresistance of a zigzag magnetic wire," Physical Review B 67, (2003).
[22] D. Buntinx, S. Veldeman, A. Volodin, and C. Van Haesendonck, "Ferromagnetic domain configuration and electrical resistance of Co zigzag wires," Journal of Magnetism and Magnetic Materials 242, 1257-1260 (2002).
[23] D. Buntinx, A. Volodin, and C. V. Haesendonck, "Combination of magnetic force microscopy with in situ magnetoresistance measurements," Journal of Applied Physics 92, 1014-1017 (2002).
[24] Y. Yang, R. M. White, and M. Asheghi, "Thermal characterization of Cu/CoFe multilayer for giant magnetoresistive head applications," Journal of Heat Transfer-Transactions of the Asme 128, 113-120 (2006).
[25] Y. Yang, J. G. Zhu, R. M. White, and M. Asheghi, "Field-dependent thermal and electrical transports in Cu/CoFe multilayer," Journal of Applied Physics 99, (2006).
[26] G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. Oxford University Press, New Year, 2005.
[27] J. F. Shackelford, and W. Alexander, CRC Materials Science and Engineering Handbook, 3rd Ed. CRC Press 2001.
[28] Z. H. Wei, and M. F. Lai, "Mechanisms of magnetization reversals in elliptical thin films," Journal of Applied Physics 101, 09F515 (2007).
[29] MatWeb, (n.d.), Alloy 52 Nickel Iron Alloy, Apr 29, 2008, http://asia.matweb.com/search/SpecificMaterial.asp?bassnum=NCALZ00.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top