(3.238.173.209) 您好!臺灣時間:2021/05/16 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蕭海騏
研究生(外文):Hai-Chi Hsiao
論文名稱:ClockSkewOptimizationUsingLinearProgrammingunderMulti-CornerMulti-ModeConditions
論文名稱(外文):考慮多重操作模式與環境參數下利用線性規劃演算法之時鐘樹時脈偏移最佳化
指導教授:張世杰張世杰引用關係
指導教授(外文):Shih-Chieh Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:39
中文關鍵詞:時鐘樹時脈偏移線性規劃
外文關鍵詞:clock skewlinear programmingclock tree
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
先進的數位電路設計中,需要設計一個時鐘樹來同步時脈到達每一個儲存單元的時間,如果到達儲存單元的時間訊號無法同步,則會產生時脈偏移。時脈偏移是一個很嚴重的問題,因為時脈偏移將直接影響電路的效能及可靠度。數位電路可能會再不同的環境下運行,如不同的電源供應電壓、運行溫度…等等,或者被設計者設計成在不同的電壓模式下操作,這些多重操作模式或環境參數將影響電路的時間行為,不同的時間行為將導致不同的時脈偏移。所以要設計一個時鐘樹同時滿足每一個操作模式或環境參數下的時間行為限制是非常困難。
我們利用線性規劃演算法,針對每一個操作模式的時間行為,同時最佳化時脈偏移,得到一個最佳解。但是最佳解是線性的值,製程技術提供的電路元件可能無法達到最佳解,於是我們又提出一個演算法將電路元件的時間延遲對應到最佳解,以得到一個估計最佳的實際時鐘樹佈局。我們觀察時脈偏移其實和時間從時脈源頭到每一個儲存單元的相對差距有關,根據此特性,我們可以動態調整時脈源頭到儲存單元的時間,在對應無法到達最佳解而產生偏差時,利用之後的對應將偏差補回來,以降低因無法對應到最佳解時而產生的時脈偏移誤差。我們的方法和當今商業工具SOCEncouunter比較,達到34.34%的改進。
Clock skew optimization is a complicated problem in modern VLSI technologies because circuits often operate in many environments (corners) such as different power supply voltage and temperature or functional modes (modes) like voltage modes. While circuits operate in different corners or modes, cell delay varies a lot. It will lead to large skew variation. Therefore, to optimize clock skew in all corners or modes is very important. In this paper, we develop an approach to minimize clock skew considering multi-corner multi-mode conditions. We optimize the clock skew in all corners simultaneously by linear programming, and propose a delay mapping algorithm that maps the buffer delay of the clock tree into optimal solutions from linear programming. Our experimental results shows there are 34.34% improvement compared with the commercial tool SOC Encounter.
中文摘要 3
Abstract 4
List of Contents: 5
List of Figures: 6
List of Tables: 7
Chapter 1 Introduction 8
Chapter 2 Problem Formulation 14
Chapter 3 Methodology 16
3.1. Linear Programming Modeling 17
3.1.1. Delay Correlation Model 17
3.1.2. Linear Programming Formulation 21
3.2. Effective Delay Mapping Algorithm 26
3.2. Effective Delay Mapping Algorithm 27
Chapter 4 Experimental Results 33
4.1 Experimental Flow 33
4.2 Experimental Results 35
Chapter 5 Conclusions 37
References 38
[1]. K. Boese and A. Kahng. Zero-skew clock routing trees with minimum wire length. In ASIC Conf., pages 1.1.1–1.1.5, 1992.
[2]. T.-H. Chao, Y.-C. Hsu, and J. Ho. Zero skew clock net routing. In DAC, pages 518–523, 1992.
[3]. S. Pullela, N. Menezes, and L. T. Pillage, “Reliable nonzero skew clock trees using wire width optimization,” in Proc. 30th Design Automation Conf., 1993, pp. 165–170.
[4]. J. Cong and K. S. Leung, “Optimal wire sizing under the distributed elmore delay model,” in Proc. Int. Conf. Computer-Aided Design, 1993, pp. 634–639.
[5]. Q. Zhu and W. W. M. Dai, “High-speed clock network sizing optimization based on distributed RC and lossy RLC interconnect models,” IEEE Trans. Computer-Aided Design Integr. Circuits Syst., vol. 15, no. 9, pp. 1106–1118, Sep. 1996.
[6]. M. P. Desai, R. Cvijetic, and J. Jensen, “Sizing of clock distribution networks for high performance CPU chips,” in Proc. 33th Design Automation Conf., 1996, pp. 389–394.
[7]. J. Cong, A. B. Kahng, C.-K. Koh, and C.-W.A. Tsao, “Bounded-skew clock and Steiner routing,” ACM Trans. Des. Automat. Electron. Syst.,vol. 3, no. 3, pp. 341–388, Jul. 1998.
[8]. I.-M. Liu, T.-L. Chou, A. Aziz, and D. F. Wong. Zero-skew clock tree construction by simultaneous routing, wire sizing and buffer insertion. In ISPD, pages 33–38, 2000.
[9]. J.-L. Tsai, T.-H. Chen, and C. C. Chen. Zero skew clock-tree optimization with buffer insertion/sizing and wire sizing. IEEE Trans. on CAD 23(4):565–573, April 2004.
[10]. K. Wang, Y. Ran, and M. Marek-Sadowska, “General Skew Constrained Clock Network Sizing Based on Sequential Linear Programming,” IEEE Transaction on CAD, vol. 24, no. 5, pp. 773–782, May 2005.
[11]. M. R. Guthaus, D. Sylvester, and R. B. Brown. Clock buffer and wire sizing using sequential programming. In Proceedings of the ACM/IEEE Design Automation Conference, pages 1041–1046, 2006.
[12]. J. P. Fishburn, “Clock skew optimization,” IEEE Trans. Comput., vol.39, no. 7, pp. 945–951, Jul. 1990.
[13]. E. G. Friedman, “Clock distribution networks in synchronous digital integrated circuits,” Proc. IEEE, vol. 89, no. 5, pp. 665–692, May 2001.
[14]. Agarwal, D. Blaauw, and V. Zolotov. Statistical clock skew analysis considering intra-die process variations. In ICCAD, pages 914–920, 2003.
[15]. M. Hashimoto, T. Yamamoto, and H. Onodera. “Statistical analysis of clock skew variation in H-tree structure,” In ISQED, 2005.
[16]. J. L. Neves and E. G. Friedman, “Optimal clock skew scheduling tolerant to process variations,” in Proc. ACM/IEEE Design Automation Conf., June 1996, pp. 623–628
[17]. H. Su and S. S. Sapatnekar, “Hybrid structured clock network construction,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, San Jose, CA, 2001, pp. 333–336.
[18]. Anand Rajaram, Jiang Hu, Rabi Mahapatra, “Reducing clock skew variability via cross links,” Proceedings of the 41st annual conference on Design automation, June 07-11, 2004, San Diego, CA, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊