跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/08 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱正安
論文名稱:在高階模擬架構下針對資料分散管理的一種適應性方法
論文名稱(外文):An Adaptive Method for Distributed Data Management in High Level Architecture
指導教授:鍾葉青鍾葉青引用關係
指導教授(外文):Yeh-Ching Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:20
中文關鍵詞:高階模擬架構資料分散管理
外文關鍵詞:High Level ArchitectureData Distribution Management
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高階模擬架構是一種公開通用的分散互動式模擬基礎架構,高階模擬架構目的在於提升各類模擬系統間交互運作性與模擬元件之重複使用性。執行基礎(Run-time Infrastructure)是高階模擬架構重要的核心,在高階模擬架構中所有模擬單元之間的互動和模擬環境的管理必須透過執行基礎所提供的服務來達成。執行基礎定義六個服務群組,分別為模擬環境管理(Federation Management)、宣告管理(Declaration Management)、物件管理(Object Management)、所有權管理(Ownership Management)、時間管理(Time Management)、資料分散管理(Data Distribution Management)。在高階模擬架構中,資料分散管理是透過比對模擬單元感興趣區域來降低模擬單元間傳輸和多餘的資料傳遞。模擬單元向執行基礎註冊發行模擬物件所感興趣區域(publisher region)和訂閱模擬物件所感興趣區域(subscriber region)。執行基礎藉由發行模擬物件所感興趣區域(publisher region)和訂閱模擬物件所感興趣區域(subscriber region)的比對,將模擬資料從發行者的模擬單元傳送到訂閱者的模擬單元。在本篇論文,我們針對資料分散管理提出一種適應性比對模擬單元感興趣區域的方法。我們將模擬單元感興趣區域映射到適應性網格上,藉由網格來篩選我們需要比對的區域來降低比對成本。而網格大小會根據我們比對成本模型來動態地調整它的大小。實驗驗證適應性網格比靜態性網格更具有彈性和效率面對各種模擬情況。
High Level Architecture is a common framework for reuse and interoperation of simulation. Run-time Infrastructure which is the fundamental component of HLA provides several services for simulators’ interaction. In High Level Architecture, the purpose of Data Distribution Management is to reduce transmission and irrelevant data among simulators by comparing their interesting regions. In this paper, we propose a matching method for Data Distribution Management to deal with simulations which can cover a large range of size of regions. In our approach, these regions are mapped onto an adaptive grid and the size of grid cells can be changed dynamically based on our matching cost model. Experimental evaluations show that our approach is more efficient than approaches with static grid cell size.
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 Region-based approach 4
2.2 Grid-based approach 4
2.3 Hybrid approach 5
Chapter 3 Adaptive Hybrid-Based DDM 6
3.1 The Matching Cost Model 6
3.2 Detailed Description of the Adaptive Hybrid Algorithm 10
Chapter 4 Performance Evaluation 13
4.1 Experimental Assumption and Platform 13
4.2 The performance of fixed regions with fixed size 14
4.2 The performance of mixed regions with different sizes 15
Chapter 5 Conclusions and Future Work 18
References 19
[1]. A.Boukerche and A.J.Roy, ”In Search of DDM in Larger-Scale Distributed Simulation”, Proceeding Summer Computer Simulation Conference,Canada,2000,pp.12-19.
[2]. A.Boukerche and A.J.Roy, ”Dynamic Grid Based Multicast Group Assignment in Data Distribution Management”, Proceeding Fourth IEEE International Workshop on Distributed Simulation and Real-time Applications Workshop 2000,pp,27-34.
[3]. A.J.Roy,” Dynamic Grid Based Data Distribution Management in Large Scale Distribution Simulations”, Master of Science Thesis, University of North Texas, 2000.
[4]. Boukerche, A. and A. J. Roy (2002). "Dynamic Grid-Based Approach to Data Distribution Management." Journal of Parallel and Distributed Computing 62:366-392.
[5]. Boukerche, A. and C. Dzermajko (2001). “Performance Comparison of Data Distribution Management Strategies.” Proceedings of the 5th IEEE International Workshop on Distributed Simulation and Real-Time Applications, Cincinnati, OH, 67-75.
[6]. Boukerche, A. and C. Dzermajko and K. Lu (2004).”Dynamic Grid-Based vs Region-Based Data Distribution Management in Multi-Resolution Large-Scale Distributed Systems.” Proceedings of the 18th International Parallel & Distributed Processing Symposium, .280.2.
[7]. Boukerche, A., N. McGraw, C. Dzermajko and K. Lu (2005). “Grid-Filtered Region-Based Data Distribution Management in Large-Scale Distributed Simulation Systems.“ Proceedings of the 38th Annual Simulation Symposium, 259-266.
[8]. Boukerche, A., N. McGraw and R. Araujo (2005).” A Grid-Filtered Region-Based Approach to Support Synchronization in Large-Scale Distributed Interactive Virtual Environments.” Proceedings of the 2005 International Conference on Parallel Processing, 525-530.
[9]. Boukerche, A., Y. Gu and R. Araujo (2006). “Performance Analysis of an Adaptive Dynamic Grid-Based Approach to Data Distribution Management.” Proceedings of the 10th IEEE International Workshop on Distributed Simulation and Real-Time Applications, 175-184.
[10]. G.Tan, R. Ayani, Y.S. Zhang and F.Moradi, "Grid-based Data Management in Distributed Simulation", Proceedings of 33rd Annual Simulation Symposium Washington, U.S.A., April 16-20 2000, pp. 7-13.
[11]. IEEE Std 1516-2000 (2000). “IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -- Framework and Rules.” New York, NY, Institute of Electrical and Electronics Engineers, Inc.
[12]. IEEE Std 1516.2-2000 (2000). “IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -- Object Model Template (OMT) Specification.” New York, NY, Institute of Electrical and Electronics Engineers, Inc.
[13]. IEEE Std 1516.3-2000 (2000). “IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA) -- Interface Specification.” New York, NY, Institute of Electrical and Electronics Engineers, Inc.
[14]. Kumova, B. (2005). “Dynamically Adaptive Partition-Based Data Distribution Management Proceedings of 19th ACM/IEEE/SCS Workshop on Principles of Advanced and Distributed Simulation, 292-300.
[15]. Morse, K. Interest Management in Large Scale Distributed Simulation (1996). University of California, Irvine Technical Report TR 96-27.
[16]. Petty, M. D. and K. L. Morse (2000). “Computational Complexity of HLA Data Distribution Management.” Proceedings of the 2000 Fall Simulation Interoperability Workshop, Orlando, FL, 00F-SIW-143.
[17]. Tan, G., Y. Zhang, et al. (2000). “A Hybrid Approach to Data Distribution Management.” Proceedings of the 4th IEEE International Workshop on Distributed Simulation and Real-Time Applications, San Francisco, CA, 55-61.
[18]. Van Hook, D. J. and J. O. Calvin (1998). “Data Distribution Management in RTI 1.3.” Proceedings of the Spring Simulation Interoperability Workshop. Orlando, FL: paper 98S-SIW-206
[19]. R. Ayani, F. Moradi and G. Tan, “Optimizing Cell size in Grid-Based DDM”. In Proceedings of the 14th Workshop on Parallel and Distributed Simulation, May 2000, pp. 93-100
[20]. S. J. Rak and D. J. Van Hook, “Evaluation of Grid-Based Relevance Filtering for Multicast Group Assignment”. In Proceedings of the Distributed Interactive Simulation, March 1996, pp. 739-747
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top