(3.238.173.209) 您好!臺灣時間:2021/05/17 11:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳恩禎
研究生(外文):En-Chen Chen
論文名稱:有機共軛高分子近紅外光學接近感測裝置
論文名稱(外文):Conjugated polymer based near-infrared optical proximity sensor
指導教授:洪勝富孟心飛
指導教授(外文):Sheng-Fu HorngHsin-Fei Meng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:可撓式有機共軛高分子紅外光有機發光二極體轉換膜光偵測器
外文關鍵詞:flexibleorganicconjugated polymerinfraredlight-emitting diodescolor conversion layerphotodetectorP3HT(poly(3-hexylthiophene)PCBM( [66]-phenyl-C61-butyric acid methylester )
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
目前光學接近感測器大部分由無機分子為材料,其製程困難,且不容易製作於可撓式基板上,若要應用於大面積感測時(如機器人的皮膚),要一顆一顆嵌入,成本相當高。相對於此,有機分子具有可撓性,可製作於大面積軟性基板而應用於任合表面,其製程簡單並有低成本的潛力。但有機分子因材料特性,發光及吸光範圍大多為可見光波段,此波段進行接近感測時可偵測距離相當短。以紅外光製作光學接近感測器較不易被散射,偵測距離也較遠,而紅外有機發光二極體非常少見,固本創作研發紅外光之光學接近感測器可同時具有偵測距離較長即可製作於大面積可撓式基板之優點。
本裝置由近紅外有機發光二極體及有機吸收近紅外的光偵測器所組成,元件操作波長大概在700nm~850nm,在紅外有機發光二極體部分是由一層的波長轉換膜及可見光發光二極體所組成。近紅外的光偵測器是由等比例混合的P3HT(poly(3-hexylthiophene)及PCBM( [6,6]-phenyl-C61-butyric acid methylester )材料所製作。藉由兩種元件的結合,形成所謂的光學接近感測裝置。最後針對阻擋物不同表面顏色及粗操度,實際量測距離結果,有效接近感測可抵達20公分。
Most commercial proximity sensors are made of inorganic materials with complicated fabrication process and the processing is not compatible with flexible substrates. It will also costly when large-area applications are required such as the skin of robots. On the contrary, it is easy for organic materials to be applied in large-area and flexible substrate due to their mechanic property. The organic materials have potential for easy fabrication process and low cost. However the emission and absorption range of organic materials are usually in the visible range. In the visible range the sensing distance is very short (~1cm). For proximity sensor the infrared light is commonly used due to longer sensing distance. It is, however, difficult for organic materials to emit or absorb infrared light. Our invention as reported in this thesis is to make an infrared organic proximity sensor through a color-conversion film. The advantages of our organic proximity sensor include both long sensing distance and large-area as well as flexible application.
A conjugated polymer optical proximity sensor which combines a polymer light-emitting diode and a polymer photodiode is demonstrated. The operation wavelength is in the near infrared spectrum from 700 nm to 850 nm. The infrared emission is obtained by adding a color conversion film of polyvinylpyrrolidone polymer matrix blended with infrared dye 1,1-diethyl-2,2-dicarbocyanine iodide to a red polymer lightemitting diode. The photodetector relies on the direct charge-transfer exciton generation in a donor-acceptor polymer blend of poly(3-hexylthiophene) and (6,6)-phenyl-C61-butyric acid methylester. The detection distance is up to 19 cm for objects with various colors and roughness under ambient indoor lighting.
中文摘要.........................................................................................................................I
英文摘要.......................................................................................................................II
致謝..............................................................................................................................IV
目錄...............................................................................................................................V
圖目錄.......................................................................................................................VIII
表目錄..........................................................................................................................XI
Chapter 1 序論
1-1前言..................................................................................................................1
1-2發展歷史..........................................................................................................2
1-3接近感測器之元件特性及應用......................................................................3
1-4研究動機與介紹..............................................................................................6
1-5論文架構..........................................................................................................6
Chapter 2 理論背景
2-1共軛高分子材料特性......................................................................................7
2-2 Color conversion layer原理............................................................................9
2-3 Polymer Light-Emitting Diode原理..............................................................11
2-3-1共軛高分子元件發光原理...................................................................11
2-3-2螢光(fluorescence)或磷光(phosphorescence)理論..............................12
2-3-3螢光能量轉移機制...............................................................................14
2-3-4共軛高分子光激發光與電激發光.......................................................16
2-4 Photo-detector................................................................................................17
2-4-1太陽能電池基本理論...........................................................................17
2-5共軛高分子的載子傳輸理論........................................................................20
2-6共軛高分子半導體元件之壽命....................................................................23


Chapter 3 實驗流程
3-1感測裝置之光學輔助薄膜成膜製作流程....................................................25
3-2距離感測裝置之電性元件製作流程............................................................27
3-2-1主動層溶液配製...................................................................................27
3-2-2 ITO蝕刻...............................................................................................28
3-2-3元件製作...............................................................................................29
3-2-3-1 ITO cleaning..............................................................................29
3-2-3-2 ITO玻璃表面處理....................................................................30
3-2-3-3 PEDOT:PSS成膜.....................................................................31
3-2-3-4有機高分子主動區成膜...........................................................31
3-2-3-5陰極蒸鍍...................................................................................32
3-2-3-6 元件封裝..................................................................................33
3-3元件量測........................................................................................................34
3-3-1輔助光學裝置元件量測.......................................................................34
3-3-2距離感測裝置之電性元件...................................................................35
3-3-3共軛高分子基本特性量測...................................................................38
3-4材料介紹........................................................................................................40
3-4-1輔助光學薄膜.......................................................................................40
3-4-2電性元件...............................................................................................42
Chapter 4 實驗結果
4-1實驗結果及設計簡介....................................................................................46
4-2利用PVP摻雜DCM2及NIR Laser dye形成最佳轉換波長薄膜...............49
4-2-1 NIR Laser dye的吸收放光基本特性..................................................49
4-2-2選擇適當的polymer matrix.................................................................50
4-2-3藉由多次Drop Casting提升轉換波長膜的效率................................53
4-2-4藉由摻雜紅光小分子材料改變紅光激發光源的要求.......................56
4-2-5調整DCM2最佳比例以及藉由多次Drop Casting提升轉換波長膜的效率......................................................................................................58
4-3黃綠光激發光源............................................................................................63
4-3-1黃綠光材料Green B材料基本特性....................................................63
4-3-2製作高效率雙層黃綠光共軛高分子發光二極體...............................65
4-3-3製作高效率雙層黃綠光共軛高分子發光二極體Part 2.....................70
4-4利用P3HT:PCBM製作紅外光偵測器.........................................................75
4-4-1距離感測裝置之光偵測器...................................................................75
4-4-2以P3HT製作簡易的color filter...........................................................77
4-5距離感側實際模擬量測................................................................................79
4-5-1 DC量測................................................................................................79
4-5-2 AC量測................................................................................................81
Chapter 5結論........................................................................................................83
Reference..............................................................................................................84.








圖目錄
圖1-1 無機光距離感測裝置與有機光距離感測裝置...........................................1
圖1-2 bulk hetero-junction使激子分離區域擴大為整個主動層..........................3
圖1-3 有機近紅外線放光裝置意識圖............................................................4
圖1-4 有機紅外光偵測器之結構能帶圖..................................................5
圖2-1 (a)聚乙炔,PA(b)聚噻吩,PT(c)聚對位苯基乙烯,PPV(d)聚苯胺,PANI...7
圖2-2 雷射染料放光原理.....................................................................................10
圖2-3 單重、三重激發態能階...............................................................................11
圖2-4 激發態能量轉換的各種形式.....................................................................13
圖2-5 單重態和三重態激子 Relaxation之比較..................................................13
圖2-6 輻射能量轉移.............................................................................................14
圖2-7 庫侖作用力.................................................................................................15
圖2-8 自旋交換機制.............................................................................................15
圖2-9 偵測器內部物理機制.................................................................................17
圖2-10 傳統太陽電池PN接面...............................................................................18
圖2-11 激子受空乏區內建電場分離.....................................................................18
圖2-12 理想太陽電池等效電路.............................................................................18
圖2-13 理想太陽電池照光之I-V特性曲線...........................................................19
圖2-14 熱注入模式.................................................................................................21
圖2-15 穿隧模式.....................................................................................................22
圖3-1 光學薄膜製作流程圖.................................................................................25
圖3-2 電性元件製作流程圖.................................................................................27
圖3-3 ITO蝕刻後之圖案......................................................................................29
圖3-4 PEDOT旋塗後示意圖................................................................................31
圖3-5 高分子層旋塗後示意圖.............................................................................32
圖3-6 蒸鍍陰極後樣品示意圖.............................................................................33
圖3-7 封裝後元件示意圖.....................................................................................33
圖3-8 UV-visible實際量測裝置...........................................................................34
圖3-9 PL efficiency實際量測裝置.......................................................................35
圖3-10 EL efficiency量測設備示意圖...................................................................36
圖3-11 EL efficiency實際量測裝置.......................................................................37
圖3-12 IPCE量測實際量測裝置............................................................................38
圖3-13 循環伏安法之電流-電壓關係圖................................................................39
圖3-14 PVP化學結構式..........................................................................................40
圖3-15 DCM2化學結構式.........................................................................................41
圖3-16 NIR laser dye化學結構式...........................................................................41
圖3-17 P3HT化學結構式.......................................................................................42
圖3-18 PEDOT化學結構式....................................................................................43
圖3-19 P3HT單體化學結構圖...............................................................................44
圖3-20 P3HT側鍵型式(a)Head-to-Head (b)Head-to-Tail......................................44
圖3-21 PCBM化學結構式......................................................................................45
圖4-1 紅外光雷射染料之吸收及放光光譜.........................................................50
圖4-2 不同比例PVP混合laser dye之放光強度..................................................52
圖4-3 不同比例PVA混合laser dye之放光強度.................................................52
圖4-4 PVP:laser dye增加膜厚之放光強度.........................................................54
圖4-5 放置7日後PVP:laser dye增加膜厚之放光強度......................................55
圖4-6 混合不同紅光小分子之放光強度.............................................................58
圖4-7 DCM2摻雜之混合溶液及drop多次的結果.............................................60
圖4-8 Rubrene摻雜之混合溶液及drop多次的結果...........................................61
圖4-9 DCM2及Rubrene的UV吸收和Green B PL光譜....................................62
圖4-10 Green B UV吸光及PL放光光譜...............................................................64
圖4-11 Green B PL efficiency量測.........................................................................64
圖4-12 Green B單層雙層元件效益比較...............................................................66
圖4-13 Green B單層雙層元件亮度比較...............................................................67
圖4-14 Green B單層雙層元件電流密度比較.......................................................67
圖4-15 Green B單層雙層元件波長比較...............................................................68
圖4-16 Green B單層雙層元件lifetim比較............................................................69
圖4-17 Green B單層雙層元件效益比較...............................................................71
圖4-18 Green B單層雙層元件亮度比較...............................................................71
圖4-19 Green B單層雙層元件電流密度比較.......................................................72
圖4-20 Green B單層雙層元件波長比較...............................................................72
圖4-21 Cross-link TFB/Green B雙層元件lifetim..................................................73
圖4-22 P3HT:PCBM 膜厚2000A之吸收光譜及IPCE量測................................76
圖4-23 P3HT:PCBM 膜厚2000A及14μm之IPCE量測.....................................76
圖4-24 color filter吸收光譜....................................................................................78
圖4-25 基本感測裝置擺設.....................................................................................79
圖4-26 DC量測之裝置架設...................................................................................80
圖4-27 DC量測法結果...........................................................................................80
圖4-28 AC量測之裝置架設...................................................................................81圖4-29 AC量測法結果...........................................................................................82





表目錄
表3-1 ITO表面處理操作條件..............................................................................30
[1]. M. Pope, H.P. Kallmann, P. Magnante, J. Chem. Phys. 38 (1963) 2042.
[2]. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51 (1987) 913.
[3]. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackey,
[4]. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183 (1986).
[5]. G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity,” Appl. Phys. Lett. 64, 3422 (1994).
[6]. Kyungkon Kim, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics” Appl. Phys. Lett. 90, 163511 (2007)
[7]. C. M. Yang, P. Y. Tsai, S. F. Horng, K. C. Lee, S. R. Tseng and H. F. Meng, J. T. Shy and C.F. Shu, Appl. Phys. Lett. 92, 083504 (2008)
[8]. Lukas Burgi, “Optical proximity and touch sensor based on monolithically integrated polymer photodiodes and polymer LEDs” Organic Electronics 7 (2006) 114-120
[9]. D. A. Skoog, D. M. West, F. J. Holler,“Fundamentals of analytical
chemistry",5th edition , Saunders College Publishing(1998)
[10]. N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford, New York, 1940
[11]. J. Frenkel, “On pre-breakdown phenomena in insulators and electric semiconductors,” Phys. Rev. 54, 647 (1938).
[12]. D. M. Pai, “Transient photoconductivity in poly(N-vinylcarbazole),” J. Chem. Phys. 52, 2285 (1970).
[13]. P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, “Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene),” Phys. Rev. B 55, 656 (1997).
[14]. J. Frenkel, Phys Rev. Letts., 14, 229 (1965)
[15]. R. H. Fowler and L. Nordheim, Proc. R. Soc. London Ser. A 119, 173 (1928)
[16]. U. Wolf, V. I. Arkhipov, H. Bassler, Phys. Rev. B, 59 7507 (1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊