|
[1] International Technology Roadmap for Semiconductor (ITRS), 2007 edition. [2] S. Lai and T. Lowery, “OUM - A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications,” Tech. Dig. - Int. Electron Devices Meet., p. 803, 2001. [3] S. R. Ovshinsky et al., “Symmertrical Current Controlling Device,” US Patent 3,271,591, 1966. [4] S. R. Ovshinsky, “Reversible electrical switching phenomena in disorder structures,” Phys. Rev. Letters, vol. 21, p. 1450, 1968. [5] H. Fritzsche, “Electronic Phenomena in Amorphous Semiconductors,” Annual Review of Materials Science, vol. 2, p. 697, 1972. [6] D. Adler, “Amorphous-semiconductor Devices,” Scientific American, vol. 236, p. 36, 1977 [7] D. Adler and S. C. Moss, “Amorphous Memories and Bistable Switches,” J. Vac. Sci. Technol., vol. 9, p. 1182, 1972. [8] R. G. Neale et al., “Nonvolatile and Reprogrammable, the Read-Mostly Memory is Here,” Electronics, p. 56, 1970. [9] R. Shanks and C. Davis, “A 1024-bit nonvolatile 15ns bipolar read-write memory,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 112, 1978. [10] J. Feinlieb et al., “Optical memory application of laser-initiated reversible phase-change in chalcogenide alloy films,” J. Non-Crystalline Solids, 8-10, p. 909, 1971. [11] M. Chen et al., “Compound materials for reversible, phase-change optical data storage,” Appl. Phys. Lett., vol. 49, p. 502, 1986. [12] M. Terao et al., “In-Se based phase change reversible optical recording film,” Proc. SPIE, p. 105, 1986. [13] N. Akahira et al., “Recent Advances in Erasable Phase-Change Optical Disks,” Proc. SPIE, p. 188, 1988. [14] T. Ohta et al., “Phase Change Disk Media Having Rapid Cooling Structure,” Jpn. J. Appl. Phys. Suppl., vol. 28, p.123, 1989. [15] N. Yamada et al., “High-speed overwritable phase-change optical disk material,” Jpn. J. Appl. Phys., Part 1 26, p. 61, 1987. [16] J. D. Maimon et al., “Chalcogenide Memory Arrays: Characterization and Radiation Effects,” IEEE Trans. Nuclear Science, vol. 50, p. 1878, 2003. [17] Y. N. Hwang et al., “Full Integration and Reliability Evaluation of Phase-change RAM Based on 0.24μm-CMOS Technologies,” Symp. on VLSI Tech. Dig., p.173, 2003. [18] Y. H. Ha et al., “An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption,” Symp. on VLSI Tech. Dig., p.175, 2003. [19] H. Horii et al., “A Novel Cell Technology Using N-doped GeSbTe Films for Phase Change RAM,” Symp. on VLSI Tech. Dig., p.177, 2003. [20] Y. N. Hwang et al., “Writing Current Reduction for High-density Phase-change RAM,” Tech. Dig. - Int. Electron Devices Meet., p. 37.1.1, 2003. [21] N. Takaura et al., “A GeSbTe Phase-Change Memory Cell Featuring a Tungsten Heater Electrode for Low-Power, Highly Stable, and Short-Read-Cycle Operations,” Tech. Dig. - Int. Electron Devices Meet., p. 37.2.1, 2003. [22] S. J. Ahn et al., “Highly Manufacturable High Density Phase Change Memory of 64Mb and Beyond,” Tech. Dig. - Int. Electron Devices Meet., p. 13, 2004. [23] M. H. R. Lankhorst et al., “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nature Materials, vol. 4, p. 347, 2005. [24] J. H. Oh et al., “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology,” Tech. Dig. - Int. Electron Devices Meet., p. 11, 2006. [25] F. Pellizzer et al., “A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications,”Symp. on VLSI Tech. Dig., p.122, 2006. [26] Ovonyx Inc., “Technical Presentation: Ovonic Unified Memory,” Santa Clara, CA, [Online] Available: http://www.ovonyx.com. [27] T. Y. Lee et al., “Formation of the ultra small programming volume of phase change random access memory by phase segregation of Ge2Sb2Te5-SiO2 mixed layer,” Proc. MRS, H5.10, 2006. [28] N. Matsuzaki1 et al., “Oxygen-doped GeSbTe Phase-change Memory Cells Featuring 1.5-V/100-μA Standard 0.13-μm CMOS Operations,” Tech. Dig. - Int. Electron Devices Meet., p. 738, 2005. [29] W. Czubatyj et al., “Current Reduction in Ovonic Memory Devices,” Proc. E\PCOS, 2006. [30] H. J. Borg et al., “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn J. Appl. Phys., Part 1 40, p. 1592, 2001. [31] M. H. R. Lankhorst et al., “Prospects of doped Sb–Te phase-change materials for high-speed recording,” Jpn. J. Appl. Phys., Part 1 42, p. 863, 2003. [32] Y. C. Chen et al., “Ultra-Thin Phase-Change Bridge Memory Device Using GeSb,” Tech. Dig. - Int. Electron Devices Meet., p. 11, 2006. [33] T. Morikawa et al., “Doped In-Ge-Te Phase Change Memory Featuring Stable Operation and Good Data Retention,” Tech. Dig. - Int. Electron Devices Meet., p. 307, 2007. [34] T. Nirschl et al., “Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory,” Tech. Dig. - Int. Electron Devices Meet., p. 461, 2007. [35] L. P. Shi et al., “Thermal analysis of nonvolatile and non rotation phase change memory cell,” Mat. Res. Soc. Symp. Proc., vol. 803, HH1.8.1, 2004. [36] Y. C. Chen et al., “An Access-Transistor-Free (0T/1R) Non-Volatile Resistance Random Access Memory (RRAM) Using a Novel Threshold Switching, Self-Rectifying Chalcogenide Device,” Tech. Dig. - Int. Electron Devices Meet., p. 37.4.1, 2003. [37] W. H. Wang et al., “Novel T shape structure PCM and Electrical-Thermal Characteristics,” Proc. VLSI-TSA, p. 1, 2006. [38] S. Y. Lee et al., “Polycrystalline silicon-germanium heating layer for phase-change memory applications,” Appl. Phys. Lett., vol. 89, 053517, 2006. [39] A. Pirovano et al., “Scaling analysis of phase-change memory technology,” Tech. Dig. - Int. Electron Devices Meet., p. 29.6.1, 2003. [40] S. H. Lee et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM,” Symp. on VLSI Tech. Dig., p. 20, 2004. [41] F. Pellizzer et al., “A 90nm Phase Change Memory Technology for Stand-Alone Non-Volatile Memory Applications,”Symp. on VLSI Tech. Dig., p.18, 2004. [42] S. J. Ahn et al., “Highly Reliable 50nm Contact Cell Technology for 256Mb PRAM,” Symp. on VLSI Tech. Dig., p. 98, 2005. [43] Y. J. Song et al., “Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology,” Symp. on VLSI Tech. Dig., p. 118, 2006. [44] S. L. Cho et al., “Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb,” Symp. on VLSI Tech. Dig., p. 96, 2005. [45] M. Breitwisch et al., “Novel Lithography-Independent Pore Phase Change Memory,” Symp. on VLSI Tech. Dig., p. 100, 2007. [46] J. I. Lee et al., “Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation,” Symp. on VLSI Tech. Dig., p. 102, 2007. [47] C. Popescu, “The effect of local nonuniformities on thermal switching and high field behavior of structures with chalcogenide glasses,” Solid-State Electron, vol. 18, p. 671, 1975. [48] A. E. Owen et al., “ The threshold characteristics of chalcogenide-glass memory switches,” J Non-Cryst Solids, vol. 32, p. 29, 1979. [49] D. Adler et al., “Threshold switching in chalcogenide-glass thin films,” J Appl Phys, vol. 51, p. 3289, 1980. [50] S. Hudgens and B. Johnson, “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology,” MRS BULLETIN, p. 1, 2004. [51] A. Pirovano et al., “Reliability Study of Phase-Change Nonvolatile Memories,” IEEE Trans Device Mater Reliab, vol. 4, p. 422, 2004. [52] A.L. Lacaita, “Phase change memories: State-of-the-art, challenges and perspectives,” Solid-State Electronics, vol. 50, p. 24, 2006. [53] J. P. Park et al., “Phase-Change Behavior of Stoichiometric Ge2Sb2Te5 in Phase-Change Random Access Memory,” Journal of The Electrochemical Society, vol. 154 , p. H139, 2007. [54] J. Sarkar and B. Gleixner, “Evolution of phase change memory characteristics with operating cycles: Electrical characterization and physical modeling,” Appl. Phys. Lett., vol. 91, 233506, 2007. [55] S. Kang et al., “A 0.1μm 1.8V 256Mb 66MHz Synchronous Burst PRAM,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 487, 2006. [56] M. Gill et al., “Ovonic Unified Memory - A High-Performance Nonvolatile Memory Technology for Stand-Alone Memory and Embedded Applications,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 12.4, 2002. [57] K. J. Lee et al., “A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 472, 2007. [58] H. F. Hamann et al., “Ultra-high-density phase-change storage Andmemory,” Nature Materials, vol. 5, 383, 2006. [59] M. Avrami, “Kinetics of Phase Change. I. General Theory,” J. Chem. Phys., vol. 7, p. 1103, 1939. [60] M. Avrami, “Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei,” J. Chem. Phys., vol. 8, p. 212, 1940. [61] M. Avrami, “Kinetics of phase change. III. Granulation, phase change, and microstructure,” J. Chem. Phys., vol. 9, p. 177, 1941. [62] C. D. Wright et al., “Simulation studies on electrical, thermal, and phase-change behavior of GeSbTe based memory devices,” Proc. EPSOS03, 2003. [63] Y. T. Kim et al., “Study on cell characteristics of PRAM using the phase–change simulation,” Proc. SISPAD, p. 211, 2003. [64] D. Ielmini et al., “Analysis of phase distribution in phase-change nonvolatile memories,” IEEE Electron Device Lett., vol. 25, p. 507, 2004. [65] A. Itri et al., “Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide fraction in phase-change memories,” Proc. IRPS, p. 209, 2004. [66] A. Redaelli et al., “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett., vol. 25, p. 684, 2004. [67] F. Bedeschi et al., “Set-Sweep Programming Pulse for Phase-Change Memories,” Proc. ISCAS, p. 967, 2006. [68] S. Hanzawa et al., “A 512kB Embedded Phase Change Memory with 416kB/s Write Throughput at 100μA Cell Write Current,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 474, 2007. [69] R. Kojima et al., “Nitrogen Doping Effect on Phase Change Optical Disks,” Jpn. J. Appl. Phys., vol. 37, p. 2098, 1998. [70] H. Seo et al., “Investigation of Crystallization Behavior of Sputter-Deposited Nitrogen-Doped Amorphous Ge2Sb2Te5 Thin Films,” Jpn. J. Appl. Phys., vol. 39, p. 745, 2000. [71] S. Lee et al., “Effect of the Bottom Electrode Contact (BEC) on the phase transformation of N2 doped Ge2Sb2Te5 (N-GST) in a Phase-change Random Access Memory,” Mater. Res. Soc. Symp. Proc., vol. 830, D7.9.1, 2005. [72] I. Friedrich et al., “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys., vol. 87, p. 4130, 2000. [73] W. Xiaoqian et al., “Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 films and Its Effect on Devices,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 1000, 2006. [74] N. Yamada et al., “Phase change material for use in a rewritable dual-layer optical disk,” Proc. SPIE, vol. 4342, p. 55, 2001. [75] R. KOJIMA and N. YAMADA, “Acceleration of Crystallization Speed by Sn Addition to Ge–Sb–Te Phase-Change Recording Material,” Jpn. J. Appl. Phys., vol. 40, p. 5930, 2001. [76] T. J. Park et al., “Phase Transition Characteristics and Device Performance of Sn-doped Ge2Sb2Te5 in Phase Change Random Access Memory,” Jpn. J. Appl. Phys., vol. 45, p. L1273, 2006. [77] D. H. Kim et al., “Electrical percolation characteristics of Ge2Sb2Te5 and Sn doped Ge2Sb2Te5 thin films during the amorphous to crystalline phase transition,” J. Appl. Phys., vol. 97, 083538, 2005. [78] W. D. Song et al., “Phase change behaviors of Sn-doped Ge–Sb–Te material,” Appl. Phys. Lett., vol. 90, 091904, 2007. [79] T. Yoshida et al., “Self-Sharpening Effect of Phase Change Erasable Media,” Jpn. J. Appl. Phys. vol. 31, p. 476, 1992. [80] K. Nishiuchi et al., “Feasibility Study of Ge-Sb-Te Phase-Change Optical Disk Medium for One-Pass Overwrite Digital Audio Recording,” Jpn., J. Appl. Phys., vol. 31, p. 653, 1992. [81] N. Yamada et al., “Thermally balanced structure of phase-change optical disk for high speed and high density recording,” Trans. Res. Soc. Jpn., vol. 15B, p. 1035, 1994. [82] S. M. Sadeghipour et al., “Phase change random access memory, thermal analysis,” Proc. ITHEM, p. 660, 2006. [83] S. R. Ovshinsky, ”Multilevel Data Storage Characteristics of Phase Change Memory Cell with Doublelayer Chalcogenide Films (Ge2Sb2Te5 and Sb2Te3),” Jpn. J. Appl. Phys., vol. 43, pp. 4695-4699, 2004. [84] T. D. Happ et al., ”Novel One-Mask Self-Heating Pillar Phase Change Memory,” Symp. on VLSI Tech. Dig., p. 120, 2006. [85] J. Maimon et al., “Chalcogenide-Based Non-Volatile Memory Technology,” Proc. Aerospace Conference, vol. 5, p. 2289, 2001. [86] Y. Zhang et al., “Multi-bit storage in reset process of Phase-change Random Access Memory (PRAM),” phys. stat. sol. (RRL), vol. 1, p. R28, 2007. [87] T. Lin et al., “Some Solutions for Writing Current Reduction and High Density Application of Phase Change Memory,” Proc. ICSICT, p. 721, 2006. [88] Y. F. Lai et al., “Stacked chalcogenide layers used as multi-state storage medium for phase change memory,” Appl. Phys., A 84, p. 21, 2006. [89] F. Rao et al., “Multilevel Data Storage Characteristics of Phase Change Memory Cell with Doublelayer Chalcogenide Films (Ge2Sb2Te5 and Sb2Te3),” Jpn. J. Appl. Phys., vol. 46, p. L25, 2007.
|