跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙得勝
研究生(外文):Der-Sheng Chao
論文名稱:高密度與高性能相變化記憶體之元件結構及其操作特性之研究
論文名稱(外文):Investigation of Device Structures and Programming Characteristics for High-density and High-performance Phase Change Memory
指導教授:連振炘
指導教授(外文):Chenhsin Lien
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:91
中文關鍵詞:相變化記憶體硫屬化合物元件結構操作電流
外文關鍵詞:phase change memorychalcogenide alloydevice structureprogramming current
相關次數:
  • 被引用被引用:1
  • 點閱點閱:337
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
The purpose of this study is to develop a high-density and high-performance phase change memory (PCM). To evaluate the programming characteristics of PCM device, a comprehensive numerical model and suitable measurement systems were developed and built. The typical mushroom-type PCM devices were fabricated to act as the platform of characteristic exploration. The programming characteristics, endurance, data retention, and multilevel programming capability of PCM devices were thoroughly investigated to acquire the critical factors in device characteristics and the failure mechanisms. The experimental results indicate that the optimization in programming pulse width and heater material is important for avoiding the incomplete SET programming which is a major mechanism responsible for endurance failure. A new double-confined PCM structure was proposed to reduce the programming current. In addition to the current constriction of the traditional confined structure, the double-confined device adds a thermal insulation layer under the active region to provide the thermal confinement. Thus the thermal efficiency is greatly improved and both the programming current and power consumption are reduced. The experimental results demonstrate that the double-confined device may be the promising candidate for high-density PCM. To further boot the memory capacity, a novel PCM multilevel storage scheme with wide programming margins was proposed and evaluated by an established comprehensive parameterized PCM HSPICE model. The simulation and experimental results demonstrate that the novel multilevel storage scheme can be realized and the serial PCM structure is preferable for high-density applications due to its lower programming current and smaller cell area. In conclusion, this study gives a rather thorough exploration of PCM device characteristics which is beneficial to improve the device performances. The results demonstrate that the developed PCM devices can meet the promised device performances in terms of low programming current (< 0.3 mA), fast programming speed (< 50 ns), good endurance (> 1E6 cycles), and long data retention (> 10 years at 85 ℃). Therefore, this PCM technology has great potential to become the next-generation mainstream nonvolatile memory.
本論文之研究動機為開發一具有高密度與高性能之相變化記憶體。為了評估相變化記憶體元件的操作特性,本研究發展一套功能強大的數值模型用於進行元件的熱電模擬工作,並建立適用的測試系統以作為元件的特性量測之用。本研究採用典型的mushroom-type相變化記憶體元件結構來作為元件特性的研究平台,元件的操作特性、耐久度、資料保存能力、以及多階操作等特性在本研究中被完整地探討,藉此可獲知影響元件特性的關鍵因素與元件失效的主要機制。由研究結果顯示不完全SET操作為造成耐久度失效的主要機制,而藉由操作脈波與heater材料的最佳化則可改善此不完全SET操作可能造成的問題。為了有效地降低相變化記憶體元件的操作電流,本研究乃提出一種新型的double-confined device的元件結構,此結構不但具有傳統confined device電流侷限的特性,藉由加入一熱絕緣層於操作區之下亦可同時提供熱侷限的效果。因此,採用double-confined device 可大大地提升元件的熱效率,因而可有效地降低元件的操作電流與功率損耗。由實驗結果也證實了double-confined device有極大的潛力可被應用於高密度的相變化記憶體。除了降低操作電流之外,實現相變化記憶體的多階操作亦為增加記憶體密度的有效作法。有鑑於此,本研究亦提出了一新型且具有較大操作區間的多階操作方法,並利用一套已建立的PCM HSPICE電路模型來模擬此多階操作的概念。由電路模擬與初步實驗的結果證實了此新型多階操作的可行性,且結果顯示串聯式的PCM元件結構因具有較低的操作電流與較小的元件面積,因而較適合應用於高密度的相變化記憶體。綜合言之,本研究提供了有關相變化記憶體元件特性的完整探討,所得的結果將有助於改善相變化記憶體的元件特性。本研究所開發的相變化記憶體元件可達成具競爭性的元件特性,包括:操作電流可低於0.3 mA、操作速度可快於50 ns、耐久度可高於1E6 cycles、以及資料保存能力在85 ℃的溫度之下可長於十年。因此,此相變化記憶體技術能夠達成高密度與高性能的目標,具有極大的潛力可成為下個世代的主流非揮發性記憶體技術。
ABSTRACT
ACKNOWLEDGEMENTS TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES

CHAPTER 1 INTRODUCTION
1.1 History of Phase Change Memory
1.2 Principles of Phase Change Memory 1.2.1 Chalcogenide Alloys
1.2.2 Storage Mechanisms (Reading and Writing)
1.2.3 Storage Element and Array Architecture
1.3 Purpose of Study
1.3.1 High-densiy PCM
1.3.2 Improvement of PCM Device Performances

CHAPTER 2 DEVELOPMENT STATUS OF PHASE CHANGE MEMORY TECHNOLOGY
2.1 Materials for Phase Change Memory
2.2 Device Structures
2.3 Fundamental Characteristics
2.3.1 Electrical Characteristics - I-V Curve and R-I Curve
2.3.2 Reliability Characteristics - Endurance and Data Retention
2.4 Array Architecture
2.5 PCM Scalability

CHAPTER 3 NUMERICAL MODEL AND MEASUREMENT SETUP
3.1 Numerical Model
3.1.1 Simulation Procedure
3.1.2 Descriptions of Numerical Model
3.2 Measurement Setup
3.2.1 Illustration of Measurement Setup
3.2.2 Measurement Items
3.2.2.1 Basic Device Characteristics
3.2.2.2 Programming Speed
3.2.2.3 Reliability Capabilities

CHAPTER 4 INVESTIGATION OF PCM DEVICE CHARACTERISTICS
4.1 Mushroom-type Structure
4.1.1 Device Structure and Process Integration
4.1.2 Device Characteristics
4.1.2.1 I-V and R-I Curves
4.1.2.2 Programming Speed
4.1.2.3 Reliability and Uniformity
4.1.2.4 Multilevel Programming and Direct Overwrite
4.2 Impact of Incomplete SET Programming
4.2.1 Thermal Simulation of SET Programming
4.2.2 Pulse Width Dependent Device Characteristics
4.2.3 Physical Model of Performance Degradation
4.3 Summary

CHAPTER 5 OPTIMIZATION OF PCM DEVICE STRUCTURE
5.1 Double-confined Structure
5.2 Process Integration
5.3 Thermal Simulation
5.4 Electrical Characterization
5.5 Summary

CHAPTER 6 NOVEL MULTILEVEL STORAGE SCHEME
6.1 PCM HSPICE Behavioral Model
6.1.1 Device Characteristics
6.1.2 Descriptions of PCM HSPICE Model
6.1.3 Simulation Results of PCM HSPICE Model
6.2 Novel Scheme of PCM Multilevel Storage
6.3 Demonstration of Novel Multilevel Storage by HSPICE Model
6.4 Experimental Results
6.5 Summary

CHAPTER 7 CONCLUSIONS

REFERENCES
PUBLICATION LIST
[1] International Technology Roadmap for Semiconductor (ITRS), 2007 edition.
[2] S. Lai and T. Lowery, “OUM - A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications,” Tech. Dig. - Int. Electron Devices Meet., p. 803, 2001.
[3] S. R. Ovshinsky et al., “Symmertrical Current Controlling Device,” US Patent 3,271,591, 1966.
[4] S. R. Ovshinsky, “Reversible electrical switching phenomena in disorder structures,” Phys. Rev. Letters, vol. 21, p. 1450, 1968.
[5] H. Fritzsche, “Electronic Phenomena in Amorphous Semiconductors,” Annual Review of Materials Science, vol. 2, p. 697, 1972.
[6] D. Adler, “Amorphous-semiconductor Devices,” Scientific American, vol. 236, p. 36, 1977
[7] D. Adler and S. C. Moss, “Amorphous Memories and Bistable Switches,” J. Vac. Sci. Technol., vol. 9, p. 1182, 1972.
[8] R. G. Neale et al., “Nonvolatile and Reprogrammable, the Read-Mostly Memory is Here,” Electronics, p. 56, 1970.
[9] R. Shanks and C. Davis, “A 1024-bit nonvolatile 15ns bipolar read-write memory,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 112, 1978.
[10] J. Feinlieb et al., “Optical memory application of laser-initiated reversible phase-change in chalcogenide alloy films,” J. Non-Crystalline Solids, 8-10, p. 909, 1971.
[11] M. Chen et al., “Compound materials for reversible, phase-change optical data storage,” Appl. Phys. Lett., vol. 49, p. 502, 1986.
[12] M. Terao et al., “In-Se based phase change reversible optical recording film,” Proc. SPIE, p. 105, 1986.
[13] N. Akahira et al., “Recent Advances in Erasable Phase-Change Optical Disks,” Proc. SPIE, p. 188, 1988.
[14] T. Ohta et al., “Phase Change Disk Media Having Rapid Cooling Structure,” Jpn. J. Appl. Phys. Suppl., vol. 28, p.123, 1989.
[15] N. Yamada et al., “High-speed overwritable phase-change optical disk material,” Jpn. J. Appl. Phys., Part 1 26, p. 61, 1987.
[16] J. D. Maimon et al., “Chalcogenide Memory Arrays: Characterization and Radiation Effects,” IEEE Trans. Nuclear Science, vol. 50, p. 1878, 2003.
[17] Y. N. Hwang et al., “Full Integration and Reliability Evaluation of Phase-change RAM Based on 0.24μm-CMOS Technologies,” Symp. on VLSI Tech. Dig., p.173, 2003.
[18] Y. H. Ha et al., “An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption,” Symp. on VLSI Tech. Dig., p.175, 2003.
[19] H. Horii et al., “A Novel Cell Technology Using N-doped GeSbTe Films for Phase Change RAM,” Symp. on VLSI Tech. Dig., p.177, 2003.
[20] Y. N. Hwang et al., “Writing Current Reduction for High-density Phase-change RAM,” Tech. Dig. - Int. Electron Devices Meet., p. 37.1.1, 2003.
[21] N. Takaura et al., “A GeSbTe Phase-Change Memory Cell Featuring a Tungsten Heater Electrode for Low-Power, Highly Stable, and Short-Read-Cycle Operations,” Tech. Dig. - Int. Electron Devices Meet., p. 37.2.1, 2003.
[22] S. J. Ahn et al., “Highly Manufacturable High Density Phase Change Memory of 64Mb and Beyond,” Tech. Dig. - Int. Electron Devices Meet., p. 13, 2004.
[23] M. H. R. Lankhorst et al., “Low-cost and nanoscale non-volatile memory concept for future silicon chips,” Nature Materials, vol. 4, p. 347, 2005.
[24] J. H. Oh et al., “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology,” Tech. Dig. - Int. Electron Devices Meet., p. 11, 2006.
[25] F. Pellizzer et al., “A 90nm Phase Change Memory Technology for Stand-Alone
Non-Volatile Memory Applications,”Symp. on VLSI Tech. Dig., p.122, 2006.
[26] Ovonyx Inc., “Technical Presentation: Ovonic Unified Memory,” Santa Clara, CA, [Online] Available: http://www.ovonyx.com.
[27] T. Y. Lee et al., “Formation of the ultra small programming volume of phase change random access memory by phase segregation of Ge2Sb2Te5-SiO2 mixed layer,” Proc. MRS, H5.10, 2006.
[28] N. Matsuzaki1 et al., “Oxygen-doped GeSbTe Phase-change Memory Cells Featuring 1.5-V/100-μA Standard 0.13-μm CMOS Operations,” Tech. Dig. - Int. Electron Devices Meet., p. 738, 2005.
[29] W. Czubatyj et al., “Current Reduction in Ovonic Memory Devices,” Proc. E\PCOS, 2006.
[30] H. J. Borg et al., “Phase-change media for high-numerical-aperture and blue-wavelength recording,” Jpn J. Appl. Phys., Part 1 40, p. 1592, 2001.
[31] M. H. R. Lankhorst et al., “Prospects of doped Sb–Te phase-change materials for high-speed recording,” Jpn. J. Appl. Phys., Part 1 42, p. 863, 2003.
[32] Y. C. Chen et al., “Ultra-Thin Phase-Change Bridge Memory Device Using GeSb,” Tech. Dig. - Int. Electron Devices Meet., p. 11, 2006.
[33] T. Morikawa et al., “Doped In-Ge-Te Phase Change Memory Featuring Stable Operation and Good Data Retention,” Tech. Dig. - Int. Electron Devices Meet., p. 307, 2007.
[34] T. Nirschl et al., “Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory,” Tech. Dig. - Int. Electron Devices Meet., p. 461, 2007.
[35] L. P. Shi et al., “Thermal analysis of nonvolatile and non rotation phase change memory cell,” Mat. Res. Soc. Symp. Proc., vol. 803, HH1.8.1, 2004.
[36] Y. C. Chen et al., “An Access-Transistor-Free (0T/1R) Non-Volatile Resistance Random Access Memory (RRAM) Using a Novel Threshold Switching, Self-Rectifying Chalcogenide Device,” Tech. Dig. - Int. Electron Devices Meet., p. 37.4.1, 2003.
[37] W. H. Wang et al., “Novel T shape structure PCM and Electrical-Thermal Characteristics,” Proc. VLSI-TSA, p. 1, 2006.
[38] S. Y. Lee et al., “Polycrystalline silicon-germanium heating layer for phase-change memory applications,” Appl. Phys. Lett., vol. 89, 053517, 2006.
[39] A. Pirovano et al., “Scaling analysis of phase-change memory technology,” Tech. Dig. - Int. Electron Devices Meet., p. 29.6.1, 2003.
[40] S. H. Lee et al., “Full Integration and Cell Characteristics for 64Mb Nonvolatile PRAM,” Symp. on VLSI Tech. Dig., p. 20, 2004.
[41] F. Pellizzer et al., “A 90nm Phase Change Memory Technology for Stand-Alone
Non-Volatile Memory Applications,”Symp. on VLSI Tech. Dig., p.18, 2004.
[42] S. J. Ahn et al., “Highly Reliable 50nm Contact Cell Technology for 256Mb PRAM,” Symp. on VLSI Tech. Dig., p. 98, 2005.
[43] Y. J. Song et al., “Highly Reliable 256Mb PRAM with Advanced Ring Contact Technology and Novel Encapsulating Technology,” Symp. on VLSI Tech. Dig., p. 118, 2006.
[44] S. L. Cho et al., “Highly Scalable On-axis Confined Cell Structure for High Density PRAM beyond 256Mb,” Symp. on VLSI Tech. Dig., p. 96, 2005.
[45] M. Breitwisch et al., “Novel Lithography-Independent Pore Phase Change Memory,” Symp. on VLSI Tech. Dig., p. 100, 2007.
[46] J. I. Lee et al., “Highly Scalable Phase Change Memory with CVD GeSbTe for Sub 50nm Generation,” Symp. on VLSI Tech. Dig., p. 102, 2007.
[47] C. Popescu, “The effect of local nonuniformities on thermal switching and high field behavior of structures with chalcogenide glasses,” Solid-State Electron, vol. 18, p. 671, 1975.
[48] A. E. Owen et al., “ The threshold characteristics of chalcogenide-glass memory switches,” J Non-Cryst Solids, vol. 32, p. 29, 1979.
[49] D. Adler et al., “Threshold switching in chalcogenide-glass thin films,” J Appl Phys, vol. 51, p. 3289, 1980.
[50] S. Hudgens and B. Johnson, “Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology,” MRS BULLETIN, p. 1, 2004.
[51] A. Pirovano et al., “Reliability Study of Phase-Change Nonvolatile Memories,” IEEE Trans Device Mater Reliab, vol. 4, p. 422, 2004.
[52] A.L. Lacaita, “Phase change memories: State-of-the-art, challenges and perspectives,” Solid-State Electronics, vol. 50, p. 24, 2006.
[53] J. P. Park et al., “Phase-Change Behavior of Stoichiometric Ge2Sb2Te5 in Phase-Change Random Access Memory,” Journal of The Electrochemical Society, vol. 154 , p. H139, 2007.
[54] J. Sarkar and B. Gleixner, “Evolution of phase change memory characteristics with operating cycles: Electrical characterization and physical modeling,” Appl. Phys. Lett., vol. 91, 233506, 2007.
[55] S. Kang et al., “A 0.1μm 1.8V 256Mb 66MHz Synchronous Burst PRAM,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 487, 2006.
[56] M. Gill et al., “Ovonic Unified Memory - A High-Performance Nonvolatile Memory Technology for Stand-Alone Memory and Embedded Applications,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 12.4, 2002.
[57] K. J. Lee et al., “A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 472, 2007.
[58] H. F. Hamann et al., “Ultra-high-density phase-change storage Andmemory,” Nature Materials, vol. 5, 383, 2006.
[59] M. Avrami, “Kinetics of Phase Change. I. General Theory,” J. Chem. Phys., vol. 7, p. 1103, 1939.
[60] M. Avrami, “Kinetics of Phase Change. II. Transformation-Time Relations for Random Distribution of Nuclei,” J. Chem. Phys., vol. 8, p. 212, 1940.
[61] M. Avrami, “Kinetics of phase change. III. Granulation, phase change, and microstructure,” J. Chem. Phys., vol. 9, p. 177, 1941.
[62] C. D. Wright et al., “Simulation studies on electrical, thermal, and phase-change behavior of GeSbTe based memory devices,” Proc. EPSOS03, 2003.
[63] Y. T. Kim et al., “Study on cell characteristics of PRAM using the phase–change simulation,” Proc. SISPAD, p. 211, 2003.
[64] D. Ielmini et al., “Analysis of phase distribution in phase-change nonvolatile memories,” IEEE Electron Device Lett., vol. 25, p. 507, 2004.
[65] A. Itri et al., “Analysis of phase-transformation dynamics and estimation of amorphous-chalcogenide fraction in phase-change memories,” Proc. IRPS, p. 209, 2004.
[66] A. Redaelli et al., “Electronic switching effect and phase-change transition in chalcogenide materials,” IEEE Electron Device Lett., vol. 25, p. 684, 2004.
[67] F. Bedeschi et al., “Set-Sweep Programming Pulse for Phase-Change Memories,” Proc. ISCAS, p. 967, 2006.
[68] S. Hanzawa et al., “A 512kB Embedded Phase Change Memory with 416kB/s Write Throughput at 100μA Cell Write Current,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 474, 2007.
[69] R. Kojima et al., “Nitrogen Doping Effect on Phase Change Optical Disks,” Jpn. J. Appl. Phys., vol. 37, p. 2098, 1998.
[70] H. Seo et al., “Investigation of Crystallization Behavior of Sputter-Deposited Nitrogen-Doped Amorphous Ge2Sb2Te5 Thin Films,” Jpn. J. Appl. Phys., vol. 39, p. 745, 2000.
[71] S. Lee et al., “Effect of the Bottom Electrode Contact (BEC) on the phase transformation of N2 doped Ge2Sb2Te5 (N-GST) in a Phase-change Random Access Memory,” Mater. Res. Soc. Symp. Proc., vol. 830, D7.9.1, 2005.
[72] I. Friedrich et al., “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements,” J. Appl. Phys., vol. 87, p. 4130, 2000.
[73] W. Xiaoqian et al., “Thickness Dependent Nano-Crystallization in Ge2Sb2Te5 films and Its Effect on Devices,” Dig. Tech. Papers of International Solid-State Circuits Conference, p. 1000, 2006.
[74] N. Yamada et al., “Phase change material for use in a rewritable dual-layer optical disk,” Proc. SPIE, vol. 4342, p. 55, 2001.
[75] R. KOJIMA and N. YAMADA, “Acceleration of Crystallization Speed by Sn Addition to Ge–Sb–Te Phase-Change Recording Material,” Jpn. J. Appl. Phys., vol. 40, p. 5930, 2001.
[76] T. J. Park et al., “Phase Transition Characteristics and Device Performance of Sn-doped Ge2Sb2Te5 in Phase Change Random Access Memory,” Jpn. J. Appl. Phys., vol. 45, p. L1273, 2006.
[77] D. H. Kim et al., “Electrical percolation characteristics of Ge2Sb2Te5 and Sn doped Ge2Sb2Te5 thin films during the amorphous to crystalline phase transition,” J. Appl. Phys., vol. 97, 083538, 2005.
[78] W. D. Song et al., “Phase change behaviors of Sn-doped Ge–Sb–Te material,” Appl. Phys. Lett., vol. 90, 091904, 2007.
[79] T. Yoshida et al., “Self-Sharpening Effect of Phase Change Erasable Media,” Jpn. J. Appl. Phys. vol. 31, p. 476, 1992.
[80] K. Nishiuchi et al., “Feasibility Study of Ge-Sb-Te Phase-Change Optical Disk Medium for One-Pass Overwrite Digital Audio Recording,” Jpn., J. Appl. Phys., vol. 31, p. 653, 1992.
[81] N. Yamada et al., “Thermally balanced structure of phase-change optical disk for high speed and high density recording,” Trans. Res. Soc. Jpn., vol. 15B, p. 1035, 1994.
[82] S. M. Sadeghipour et al., “Phase change random access memory, thermal analysis,” Proc. ITHEM, p. 660, 2006.
[83] S. R. Ovshinsky, ”Multilevel Data Storage Characteristics of Phase Change Memory Cell with Doublelayer Chalcogenide Films (Ge2Sb2Te5 and Sb2Te3),” Jpn. J. Appl. Phys., vol. 43, pp. 4695-4699, 2004.
[84] T. D. Happ et al., ”Novel One-Mask Self-Heating Pillar Phase Change Memory,” Symp. on VLSI Tech. Dig., p. 120, 2006.
[85] J. Maimon et al., “Chalcogenide-Based Non-Volatile Memory Technology,” Proc. Aerospace Conference, vol. 5, p. 2289, 2001.
[86] Y. Zhang et al., “Multi-bit storage in reset process of Phase-change Random Access Memory (PRAM),” phys. stat. sol. (RRL), vol. 1, p. R28, 2007.
[87] T. Lin et al., “Some Solutions for Writing Current Reduction and High Density Application of Phase Change Memory,” Proc. ICSICT, p. 721, 2006.
[88] Y. F. Lai et al., “Stacked chalcogenide layers used as multi-state storage medium
for phase change memory,” Appl. Phys., A 84, p. 21, 2006.
[89] F. Rao et al., “Multilevel Data Storage Characteristics of Phase Change Memory Cell with Doublelayer Chalcogenide Films (Ge2Sb2Te5 and Sb2Te3),” Jpn. J. Appl. Phys., vol. 46, p. L25, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top