|
[1] The Nobel Prize in Physiology or Medicine 2000. http://nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html
[2]http://life.nthu.edu.tw/~g864264/Neuroscience/Disorder/parkinson.htm #ther
[3] J.M. Bustillo and R.S. Muller, “Surface micromachining for microelectromechanical systems,” Proc. IEEE 86, pp. 1552-1574, 1998.
[4] J. H. Smith, S. Montague, J. J. Sniegowski, J. R. Murray, et al., “Embedded micromechanical devices for the monolithic integration of MEMS with CMOS,” in Proc. Int. Electron Devices Meeting, Washington, DC, Dec. 10-13, pp. 609-612, 1995.
[5] Zhang LH, Teshima N, Hasebe T, Kurihara M, Kawashima T., “Flow-injection determination of trace amounts of dopamine by chemiluminescence detection,” Talanta vol. 50, pp. 677-683, 1999.
[6] I. C. Vieira and O. Fatibello-Filho, “Pectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source,” Talanta, vol. 46, pp. 559-564, 1998.
[7] P. Nagaraja, R.A. Vasantha and K.R. Sunitha, “A sensitive and selective spectrophotometric estimation of catechol derivatives in pharmaceutical preparations,” Talanta, vol. 55, pp. 1039-1046, 2001.
[8] F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, and B. Madea, “Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry,” Forensic Sci. Int., 113, pp. 359-366, 2000.
[9] T. J. Panholzer, J. Beyer, and K. Lictwald, “Coupled-column liquid chromatographic analysis of catecholamines, serotonin, and metabolites in human urine,” Clin Chem,45, pp. 262, 1999.
[10] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, and L. Masotti, “Determination of catecholamines in human plasma by high-performance liquid chromatography with electrochemical detection,” J. Chromatogr. B, 730:201, 1999.
[11] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D. O’Hare, “Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection,” J. Chromatogr. B, 818, pp. 269-276, 2005.
[12] R. L. Aponte, J. A. Diaz, A. A. Pereira, and V. G. Diaz, “Simple thin layer chromatography method with fiber Optic remote sensor for fluorimetric Quantification of Tryptophan and Related Metabolites,” J. Liq Chromatogr. Relat. Technol. 19, pp. 687-698, 1996.
[13] A. Liu, I. Honma, and H. Zhou, “Electrochemical biosensor based on protein–polysaccharide hybrid for selective detection of nanomolar dopamine metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC),” Electrochem. Commun., 7, pp. 233-236, 2005.
[14] P. R. Roy, T. Okajima, and T. Ohsaka, “Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified electrodes,” Bioelectrochem., 59, pp. 11-19, 2003.
[15] M. Sotomayor, A. A. Tanaka, L. T. Kubota, “Development of an amperometric sensor highly selective for dopamine and analogous compounds determination using bis(2,2 -Bipyridil)copper(II)chloride complex,” Electroanalysis, 15, pp. 787-796, 2003.
[16] T. J. Castilho, M. Sotomayor, and L. T. Kubota, “Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples,” J. Pharm Biomed Anal, 37(4), pp. 785-791, 2005.
[17] K. Miyazaki, G. Matsumoto, M. Yamada, S. Yasui, and H. Kaneko, “Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin with ascorbic acid on the GRC electrode,” Electrochim Acta, 44, pp. 3809-3820, 1999.
[18] J. M. Zen and P. J. Chen, “An ultrasensitive voltammetric method for dopamine and catechol detection using clay-modified electrodes,” Electroanalysis, 10, pp. 12-15, 1998.
[19] J. M. Zen, W. M. Wang, and G. Ilangovan, “Adsorptive potentiometric stripping analysis of dopamine on clay-modified electrode,” Anal Chim Acta, 372, pp. 315-321, 1998.
[20] L. Gorton, E. Domı́nguez, “Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes,” Reviews in Molecular Biotechnology 82, pp. 371-392, 2002.
[21] M. Wei, M. Li, N. Li, Z. Gu, X. Duan,“Electrocatalytic oxidation of norepinephrine at a reduced c60-[dimethyl-(β-cyclodextrin)]2 and nafion chemically modified electrode,” Electrochim Acta 47, pp. 2673-2678, 2002.
[22] J. Wang, M. Li, Z. Shi, N. Li and Z. Gu, “Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes,” Electroanalysis, vol. 14, pp. 225-230, 2002.
[23] M. D. Rubianes and G. A. Rivas, “Highly selective dopamine quantification using a glassy carbon electrode modified with a melanin-type polymer,” Anal Chim Acta, vol. 440, pp. 99-108, 2001.
[24] J. Wang and A. Walcarius, “Zeolite-modified carbon paste electrode for selective monitoring of dopamine,” J. Electroanal. Chem. vol. 407, pp. 183-187, 1996.
[25] Y. F. Tu and H. Y. Chen, “A nano-molar sensitive disposable biosensor for determination of dopamine,” Biosens. Bioelectron. vol. 17, pp. 19-24, 2002.
[26] J. W. Mo and B. Ogorevc, “Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber,” Anal. Chem. vol. 73, pp. 1196-1202, 2001.
[27] S. M. Chen and K. C. Lin, “The electrocatalytic properties of biological molecules using polymerized luminol film-modified electrodes,” J. Electroanal. Chem. vol. 523, pp. 93-105, 2002.
[28] M Chicharro, A Sánchez, A Zapardiel, MD Rubianes, and G. Rivas, “Capillary electrophoresis of neurotransmitters with amperometric detection at melanin-type polymer-modified carbon electrodes,” Anal. Chim. Acta 523, pp. 185-191, 2004.
[29] R. Aguilar, M. M. Dávila, M.P. Elizalde, J. Mattusch and R. Wennrich, “Capability of a carbon–polyvinylchloride composite electrode for the detection of dopamine, ascorbic acid and uric acid,” Electrochim. Acta 49, pp. 851-859, 2004.
[30] S. M. Chen and K. T. Peng, “The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films,” J. Electroanal. Chem. vol. 547, pp. 179-189, 2003.
[31] F. Lisdat, U. Wollenberger, A. Makower, H. Hörtnagl, D. Pfeiffer, and F. W. Scheller, “Catecholamine detection using enzymatic amplification,” Biosens. Bioelectron. vol. 12, pp. 1199-1211, 1997.
[32] Cheng, F.-C. and Kuo, J.-S., “High-performance liquid chromatographic analysis with electrochemical detection of biogenic amines using microbore columns,” J. Chromatogr. B, vol. 665, pp. 1-13, 1995.
[33] R. Kurita, H. Tabei, Z. Liu, T. Horiuchi, and O. Niwa, “Fabri-cation and electrochemical properties of an interdigitated array electrode in a microfabricated wall-jet cell,” Sens. Actuators B, Chem., vol. B71, no. 1\-2, pp. 82-89, 2000.
[34] Skoog, D. A.; Holler, F. J.; Nieman, T. A. “Principles of Instrumental Analysis,” 5 th ed; Harcourt Brace College: USA, 1998.
[35] H. Suzuki, T. Hirakawa, S. Sakaki, and I. Karube, “An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode,” Anal. Chim. Acta, vol. 387, pp. 103-112, 1999.
[36] S.I. Park, S.B. Jun, S. Park, H.C. Kim and S.J. Kim, “Application of a new Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose sensor,” IEEE Sens. J. 3, pp. 267-273, 2003.
[37] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, “Ag/AgCl microelectrodes with improved stability for microfluidics,” Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
[38] R. Thewes et al, “Sensor arrays for fully electronic DNA detection on CMOS,” ISSCC, Digest of Tech. Papers, pp. 350-351, 2002.
[39] F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer, D.D.J. Kuhlmeier, J. Krause, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht, K. Plehnert, G. Eckstein and R. Thewes, “Fully electronic DNA detection on a CMOS chip: device and process issues.” Tech. Dig., Int. Electron Devices Meet., pp. 488-491, 2002.
[40] M. Paeschke, U. Wollenberger, T. Lisec, U. Schnakenberg and R. Hintsche, “Highly sensitive electrochemical microsensors using submicrometer electrode arrays,” Sens. Actuators, B 26-27, pp. 394-397, 1995.
[41] K. Aoki, M. Morita, O. Niwa, H. Tabei, “Quantitative analysis of reversible diffusion-controlled currents of redox soluble species at interdigitated array electrodes under steady-state conditions,” J. Electroanal. Chem. vol. 256, 269±282, 1988.
[42] R. S. Muller and T. I. Kamins, “Device Electronics for Integrated Circuits,” 3 th ed; New York: Wiley, 2003.
[43] K.R. Williams, B. Adhyaru, I. German and T. Russell, ”Determination of a diffusion coefficient by capillary electrophoresis. An experiment for the physical and biophysical chemistry laboratories,” J. Chem. Educ.79, pp. 1475-1476, 2002.
[44] Y. Taur, T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge University Press, Cambridge 1998.
[45] M.J. Deen and Z.X. Yan, “Substrate bias effects on drain-induced barrier lowering inshort-channel PMOS devices,” Electron Devices, IEEE Transactions on., vol. 37, Issue: 7, pp. 1707-1713, Jul. 1990.
|