(3.232.129.123) 您好!臺灣時間:2021/03/06 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:田力耕
研究生(外文):Li-Gan Tien
論文名稱:單壁奈米碳管的空缺陷及其交互作用於電性上之影響
論文名稱(外文):Effect of vacancy defects and defects interaction on electrical properties of single-walled carbon nanotube
指導教授:蔡春鴻蔡春鴻引用關係
指導教授(外文):Chuen-Horng Tsai
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:82
中文關鍵詞:單壁奈米碳管空缺陷密度泛函理論電場交互作用
外文關鍵詞:single-walled carbon nanotubevacancy defectsDFTelectric fieldinteraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
自西元1991年發現奈米碳管, 由於其獨特的物理、化學及力學特性,引起各界人士廣泛的研究和討論。奈米碳管可看作是由石墨烯層片捲成的奈米尺度空心圓柱,用理論的方法預測了理想奈米碳管之電學特性發現與石墨烯層捲曲的角度及直徑有直接的關係。然而,現今所有製造出來的奈米碳管都存在著各種不同的缺陷。因此其特性往往和之前理論預測有所出入。因此研究存在缺陷的奈米碳管的基本特性,將會是一件非常重要及有趣的事情。從一些理論和實驗都證明,當有空缺陷存在於奈米碳管時,將會造成奈米碳管的結構發生重構現象,進而影響其能帶結構和電子傳輸特性。但是還有很多特性仍是未知的。例如,空缺陷的密度如何造成電性的改變、缺陷間的作用力如何導致電性變化、以及有缺陷的奈米碳管在外加電場下,電性又將是如何的改變。因此在本論文中,我們將應用理論計算,研究存在空缺陷之奈米碳管的能帶結構及電子傳輸特性,並探討利用空缺陷來控制奈米碳管能隙的可行性。希望透過此研究能對未來奈米碳管在電子元件上的應用有所幫助。
1 Introduction 1
2 Overview of Single-Walled Carbon Nanotube 5
2.1 Geometrical Structures of Single-Walled Carbon Nanotube5
2.1.1 Chiral Vector . . . . . . . . . . . . 6
2.1.2 Translation Vector . . . . . . . . . . 7
2.1.3 Reciprocal Lattice Vector. . . . . . . 9
2.2 Electrical Properties of Single-Walled Carbon Nanotubes9
2.3 Structural Defects in Single-Walled Carbon Nanotubes 12
2.3.1 Vacancy Defects . . . .. . . . . . . . 15
2.3.2 Topological Defects . . . . . . . . . 20
3 Density Functional Theory . . . . . . . . . 23
3.1 Density Functional Computational Methods .23
3.1.1 Density Function Approach . . . . . . . 24
3.1.2 Local Density Approximation . . . . . . 26
3.1.3 Bloch’s Theorem . . . . . . . . . . . 27
3.1.4 Plane Wave Basis Set . . . . . . . . . . 28
3.1.5 Supercell Approach . . . . . . . . . . . 28
3.2 CASTEP . . . . . . . . . . . . . . . . . . 29
3.3 Approach . . . . . . . . . . . . . . . . . 30
3.4 Computational Equipment . . . . . . . . . 31
4 Characterization of Vacancy Defects and Defects Interaction 33
4.1 Characterization of an Isolated Vacancy Defect in Zigzag SWNTs 36
4.1.1 Vacancy Defect Density Modeling . . . . . 36
4.1.2 Calculation Methods . . . . . . . . . . . 37
4.1.3 Effect of an Isolated Vacancy Defect . . 37
4.1.4 Conclusion .. . . . . . . . . . . . . . . 43
4.2 Characterization of Vacancy Defects Interaction on the Electric Properties of Zigzag Single-Walled Carbon Nanotube 43
4.2.1 Divacancy Defects Interaction Modeling . . . 44
4.2.2 Calculation Methods . . . . . . . . . . . .. 44
4.2.3 Influence of Vacancy Defects Interaction .. . 45
4.2.4 Conclusion . . . . . . . . . . . . . . . . . 49
4.3 Influence of Vacany Defects Density on Electrical Properties of Armchair Single-Walled Carbon Nanotube 50
4.3.1 Vacancy Defect Density Modeling . . . . .. . 51
4.3.2 Calculation Methods . . . . . . . . . . . . 51
4.3.3 Influence of Vacany Defects Density . . . . 52
4.3.4 Conclusion . . . . . . . . . . . . . . . . 54
5 Defective Carbon Nanotubes Under a Transverse Electrical Field 57
5.1 Zigzag Single-walled Carbon Nanotubes . . . . 58
5.1.1 Model of Zigzag SWNTs under Transverse Electric Field 58
5.1.2 Calculation Methods . . . . . . . . 59
5.1.3 Bandgap Modification . . . . . . . . . . . 60
5.1.4 Conclusion . . . . . . . . . . . . . . . . . 65
5.2 Chiral Single-Walled Carbon Nanotube . . . . . 66
5.2.1 Model of Chiral SWNTs Under Transverse Electric Field . 66
5.2.2 Effect of Vacancy Defect on Electrical Properties 68
5.2.3 Conclusion . . . . . . . . . . . . . . . . 74
6 Summary . . . . . . . . . . . . . .75
[1] International Technology Roadmap for Semiconductors, 2005 Edition,
Semicinductor Industry Association (SIA), Austin, texas: SEMATECH,USA,2706 Montopolis Drive, Austin, Texas 78741; http://www.itrs.net/
[2] G. Moore, ”Progress in Digital Integrated Electronics,” IEDM Tech. Digest,11 (1975).
[3] R. Dennard, F. H. Gaensslen, H. N. Yu, L. Rideout, E. Bassous, and A. R. LeBlanc, IEEE J. Solid State Circuits SC-9, 256 (1974).
[4] P. Packan, Science 285, 2079 (1999).
[5] J. Meindl, Proc. IEEE 83, 619 (1995).
[6] S. Asai and Y. Wada, Proc. IEEE 85, 505 (1997).
[7] B. Hoeneisen and C. A. Mead, Solid State Electron. 15, 819 (1972).
[8] H.-S. P.Wong, D. Frank, P. M. Solomon, H. -J.Wann, and J.Welser, Proc.
IEEE 87, 537 (1999).
[9] D. Frank, R. Dennard, E. Nowak, P. Solomon, Y. Taur, and H.-S. Wong,
Proc. IEEE 89, 259-288 (2001).
[10] R. W. Keyes, Proc. IEEE 89, 227-239 (2001).
[11] J. Plummer and P. Griffin, Proc. IEEE 89, 240-258 (2001).
[12] H.-S. Wong, IBM J. Res & Dev., 46, 133 (2002).
[13] S. T. Tans, R. M. Verschueren, C. Dekker, Nature, 393, 49 (1998).
[14] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Appl. Phys.Lett. 73,2447 (1998).
[15] S. Iijima, Nature 354, 56 (1991).
[16] S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
[17] D. S. Bethune et al., Nature 363, 605 (1993).
[18] C. Dekker, Phys. Today 52, 22 (1999).
[19] T. W. Odom, J.L. Huang, P. Kim, C. M. Lieber, J.Phys. Chem. B 104,2794 (2000).
[20] V. Derycke, R. Martel, J. Appenzeller and P. Avouris, Nano Lett. 1, 453 (2001).78
[21] T. W. Ebbsen and T. Takada, Carbon 33, 973 (1995).
[22] B. W. Smith and D. E. Luzzi, J. Appl. Phys. 90, 3509 (2001).
[23] Krasheninnikov, A. V.; Nordlund, K.; Sirvio, M.; Salonen, E.; Keinonen,
J. Phys. Rev. B 2001, 63, 245405.
[24] A. V. Krasheninnikov, K. Nordlund and J. Keinonen, Phys. Rev. B 65,
165423 (2002).
[25] M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham
and H. Park, Science 291, 283 (2001).
[26] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund and K.
Kaski, Phys. Rev. B 70, 245416 (2004).
[27] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita and S. Ijima, Nature 430,
870 (2004).
[28] Y. Fan, B. R. Goldsmith and P. G. Collins, Nature Mater. 4, 906 (2005).
[29] C. Gomez-Navarro, P. J. De Pablo, J. Gomez-Herrero, B. Biel, F. J. Garcia-
Vidal, A. Rubio and F. Flores, Nature Mater. 4, 534 (2005).
[30] N. Neophytou, D. Kienle, E. Polizzi and M. P. Anantram, Appl. Phys.
Lett. 88, 242106 (2006).
[31] B. Biel, F. J. Garcia-Vidal, A. Rubio and F. Flores, Phys. Rev. Lett. 95,
266801 (2005).
[32] G. Kim, B. W. Jeong and J. Ihm, Appl. Phys. Lett. 88, 193107 (2006).
[33] M. Ouyang, J. L. Huang, C. L. Cheung and C. M. Lieber, Science 291, 97
(2001).
[34] H. J. Choi, J. Ihm, S. G. Louie and M. L. Cohen, Phys. Rev. Lett. 84, 2917
(2000).
[35] T. Zhou, L. Yang, J. Wu, W. Duan and B.-L. Gu, Phys. Rev. B. 72, 193407
(2005).
[36] C. Zhou, J. Kong, H. Dai, Appl. Phys. Lett. 76, 1597 (1999).
[37] L. Lou, P. Nordlander, R. E. Smalley, Phys. Rev. B. 52, 1429 (1995).
[38] C. Kim, B. Kim, S. M. Lee, C. Jo, Y. H. Lee, Appl. Phys. Lett. 79, 1187
(2001).
[39] A. Rochefort, M. D. Ventra, P. Avouris, Appl. Phys. Lett. 78, 2521 (2001).
[40] Y. Li, S. V. Rotkin and U. Ravaioli, Nano Lett. 3, 183 (2003).
[41] E. N. Brothers, K. N. Kudin and G. E. Scuseria, Phys. Rev. B. 72, 033402
(2005).
[42] D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates, J. Liu and
R. E. Smalley, Chem. Phys. Lett. 324, 213 (2000).
[43] R. Saito, G Dresselhaus, and M. S. Dresselhaus, Physical Properties of
Carbon Nanotubes. Imperial College Press, London (1999)
[44] M. Cardona, R. Merlin, Light Scattering in Solid IX novel materials and
techniques, Springer (2007)
[45] M. S. Dresslhaus. G. Dresselhaus, P. C. Eklund . Science of Fullerenes &
Carbon Nanotubes. San Diego: Academic Press (1996)
[46] P. J. F. Harris. Carbon Nanotubes and Related Structures-New Materials
for the Twenty First Century. Cambridge University Press. (1999)
[47] M. S. Dresslhaus , P. C. Eklund. Adv phys. 49, 705 (2000)
[48] N. Hamada ,S. Sawada, A. Oshiyama, A New one-dimensional conductors:
graphite microtubules. Phys. Rev. Lett. 68, 1579 (1992)
[49] R. Saito, M. Fujita, M. S. Dresslhaus, G Dresselhaus, Electronic structure
of chiral raphene tubules. Appl. Phys. Lett. 60, 2204 (1992)
[50] J. W. Mintmire, B. L. Dunlap, C. T. White, Are fullerene tubules metallic?
Phys. Rev. Lett. 68, 631 (1992)
[51] J. C. Charlier, Defects in Carbon Nanotubes, Acc. CHem. Res. 35, 1063
(2002)
[52] P. M. Ajayan, V. Ravikumar, and J,-C. Charlier, Surface reconstructions
and dimensional charges in single-walled carbon nanotubes
[53] A.Vijayaraghavan, K. Kanzaki, S. Suzuki, Y. Kobayashi, H. Inokawa, Y.
Ono, S. Kar, P. M. Ajayan, Nano Lett. 5, 1575 (2005)
[54] A. V. Krasheninnkov, K. Nordlund, M. Sirvio, E. Salonen, J. Kotakoki,
Energetics, Formation of ion-irradiation-induced atomic-scale defects
on walls of carbon nanotubs, 63,245405
[55] M. P. Anantram, T. T. Govindan, Phys. Rev. B, 58, 4882 (1998)
[56] S. Lee, G. Kim, H, Kim, B. -Y. Choi, J. Lee, B. W. Jeong, J. Ihm, W.
Kuk, S. -J. Kanhng, Phys. Rev. Lett., 95, 166402 (2005)
[57] A. J. Lu and B. C. Pan, Phys. Rev. Lett., 92, 105504 (2004)
[58] R. L. Zhou, H. Y. He, and B. C. Pan, Phys. Rev. B, 75, 113401 (2007)
[59] L. Chico, V. H. Crespi, L. X. Benedict, S. G.. Louie, M. L. Cohen, Pure
carbon nanoscale devices : nanotube Heterojuncyions, 76, 971 (1996)
[60] M. Menon, Carbon nanotube T junction nanoscale metal-semiconductormetal
contact devices, Phys. Rev. Lett, 79, 4453 (1997)
[61] N. Park, M. Yoon, S. Berber, J. Ihm, E. Osawa, D. Tomanek, Magnetism
in all-carbon nanostructures with negative Gaussian curvature, 91, 237204
(2003)
[62] P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136,
B864 (1964)
[63] W. Kohn, L. J. Sham, Self-consistent equations including exchange and
correlation effects. Phys. Rev. 140, A1133 (1965)
[64] M. C. Payne, M. P. Teter, D. C. Allan, D. C. Arias, J. D. Johannopoulos,
Rev. Mod. Phys., 64, 1045 (1992).
[65] http://www.tcm.phy.cam.ac.uk/castep
[66] http://www.accelrys.com
[67] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,
D. J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
[68] J. A. White, D. M. Bird, Phys. Rev. B 50, 4954 (1994).
[69] G. Ortiz and P. Ballone, Phys. Rev. B 43, 6376 (1991)
[70] G. Ortiz, Phys. Rev. B 45, 11 328 (1992)
[71] A. Garcia, C. Elsasser, J. Zhu, S.G. Louie, and M. L. Cohen, Phys. Rev.
B 46, 9829 (1992)
[72] C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev.
Lett. 69,462 (1992)
[73] K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080
(1993)
[74] Charles Kittel, Introduction to solid state physics, wiley
[75] Milkie D E, Staii C, Paulson S, Hindman E, Johnson A, Kikkawa J M 2005
Nano Letters 5 1135.
[76] Baskin E, Reznik A, Saada D, Adler J, Kalish R 2001 Phys. Rev. B 64,
224110.
[77] Vanderbilt D 1990 Phys. Rev. B 41 7892.
[78] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13, 5188.
[79] Kotakoski J, Krasheninnikov A V, Nordlund K 2006 Phys. Rev. B 74
245420
[80] Ajayan, P. M.; Ravikumar, V.; Charlier, J. C. Phys. Rev. Lett. 1998, 81,
1437.
[81] Rossato, J.; Baierle, R. J.; Fazzio, A.; Mota, R. Nano Lett. 2005, 5, 197.
[82] Gordillo, M. C. Phys. Rev. Lett. 2006, 96, 216102.
[83] Kostov, M. K.; Santiso, E. E.; George, A. M.; Gubbins, K. E.; Nardelli,
M. B. Phys. Rev. Lett. 2005, 95, 136105.
[84] Song, H. F.; Zhu, J.-L.; Xiong, J. J. Phys. Rev. B 2002, 65, 085408.
[85] Lindefelt, U. Phys. Rev. B 2005, 72, 153405.
[86] Berber, S.; Kwon, Y. K.; Tomanek, D. Phys. Rev. Lett. 2002, 88, 185502.
[87] Hasi, F.; Simon, F.; Kuzmany, K. J. Nanosci. Nanotechnol. 2005, 5, 1785.
[88] Halgreen, T. A.; Lipscomb, W. N. Chem. Phys. Lett. 1977, 49, 225.
[89] Lee, G.-D.; Wang, C. Z.; Yoon, E.; Hwang, N.-M.; Kim, D.-Y. Phys. Rev.
Lett. 2005, 95, 205501.
[90] K. Kanzaki, S. Suzuki, H. Inokawa, Y. Ono, A. Vijayaraghavan, Y.
Kobayashi J. Appl. Phys. 101 (2007) 034317.
[91] S. Suzuki and Y. Kobayashi, Jpn. J. Appl. Phys., Part 2 44 (2005) L1498.
[92] J. Y. Park, Appl. Phys. Lett. 90 (2007) 023112.
[93] M. A. Reed and J. M. Tour, Sci Am. 282, 86 (2000).
[94] J.-C. Charlier, T. W. Ebbesen, P. Lambin, Phys. Rev. B 53, 11108 (1996).
[95] V. H. Crespi, M. L. Cohen, A. Rubio, Phys. Rev. Lett. 79, 2093 (1997).
[96] L. Chico, M. P. LopezSancho, M. C. Munoz, Phys. Rev. Lett. 81, 1278
(1998).
[97] T. Kostyrko, M. Bartkowiak, G. D. Mahan, Phys. Rev. B 60, 10735 (1999).
[98] A. Hansson, M. Paulsson, S. Stafstrom, Phys. Rev. B 62, 7639 (2000).
[99] C. P. Ewels, M. I. Heggie, P. R. Briddon, Chem. Phys. Lett. 351, 178
(2002).
[100] K. Urita, K. Suenaga, T . Sugai, H. Shinohara, S. Iijima, Phys. Rev. Lett.
94, 155502 (2005).
[101] A. J. Lu, B. C. Pan, Phys. Rev. B 71, 165416 (2005).
[102] Y. C. Ma, P. O. Lehtinen, A. S. Foster, R. M. Nieminen New J. Phys. 6 68
(2004).
[103] Y. Fan, N. Emmott, P. G. Collins, Technical Proceedings of the 2005 NSTI
Nanotechnology Conference and Trade Show, Vol. 2 230 (2005).
[104] M. Freitag, A. T. Johnson, S. V. Kalinin and D. A. Bonnell, Phys. Rev.
Lett. 89, 216801 (2002).
[105] K. Kunc and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982).
[106] C. W. Chen, M. H. Lee and S. J. Clark, Nanotechnology, 15, 1837 (2004).
[107] S. Reich, C. Thomsen and P. Ordejon, Phys. Rev. B 65, 155411 (2002).
[108] L. G. Tien, C. H. Tsai, F. Y. Li, M. H. Lee, Phys. Rev. B 72, 245417 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔