跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李惇瀚
研究生(外文):Dun-Han Li
論文名稱:Ni/SiO2雙層催化劑結構合成側向成長單壁奈米碳管直徑分佈對場效電晶體電性影響之研究
論文名稱(外文):Effect of Diameter Distribution on the Electrical Properties of the Field-Effect Transistors based on Lateral Grown Single-Walled Carbon Nanotubes Using Double-Layered Catalyst Pads
指導教授:蔡春鴻蔡春鴻引用關係
指導教授(外文):Chuen-Horng Tsai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:113
中文關鍵詞:單壁奈米碳管直徑分佈場效電晶體
外文關鍵詞:Carbon NanotubesDiameter DistributionField-Effect Transistors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管(carbon nanotube, CNT)具有優異的電性,所以奈米碳管電晶體具有相當大的潛力應用於未來的奈米電子元件。本研究使用雙層的催化劑結構,以高溫化學氣相沈積(thermal chemical vapor depositon, thermal CVD)的方式成長平貼於基板上的高品質單壁奈米碳管(single-walled carbon nanotube, SWNT),並臨場(in-situ)製作成奈米碳管場效應電晶體(CNT field-effect transistors, CNT-FETs)相較於一般以奈米碳管溶液之旋塗法所製作的奈米碳管電晶體相比較,本方法能有效的定位奈米碳管,並能由奈米碳管製程參數控制奈米碳管的密度、長度以及直徑,而且不需高溫退火來改善奈米碳管與電極金屬之間的接觸阻抗。
使用高溫氧化生成1 μm厚度的SiO2做為背閘極介電層,揭述催化劑何上層SiO2製程以850℃的製程溫度臨場成長密度及長度皆能符合電晶體需求的奈米碳管,且電晶體能維持在約八成的良率。而H.J. Dai研究團隊曾經由理論預測,在相同製程環境下,若所成長的單壁奈米碳管直徑較小,將會優先形成較高比例的半導性奈米碳管。本論文以H.J. Dai研究團隊的理論預測和本實驗室發展的以Ni/SiO2構成雙層催化劑結構成長和控制奈米碳管直徑分佈之創新製程為基礎,藉由改變SiO2的鍍率、厚度以及製程溫度去探討隨著這些參數的改變,對於碳管的直徑分佈和半導性碳管或是金屬性碳管比例的影響。實驗結果顯示,隨著上層SiO2結構鍍率的降低,半導性的奈米碳管比例增加。主要是改變雙層催化劑結構上層SiO2結構探討奈米碳管的直徑分佈與奈米碳管電晶體的場效特性之間的關係,並且直接在已成長SWNTs的基板上臨場製作成背閘極結構的奈米碳管電晶體。利用改變雙層催化劑結構的SiO2鍍率,我們可以得到具有良好的場效特性的元件將近70%,並且在此製程下成長出大約70%的半導性奈米碳管。
摘要………………………………………………………….................……….......i
致謝………………………………………….................……….............................iii
目錄…………………………………….....………………………………..….........v
圖目錄…………………………………………..………………...........…..….....ix
表目錄………………………………………..………………….....……..….....xii

第一章 緒論………………………………………………………...………....1
1.1 奈米碳管的結構..…….….……….………..........…….….…………….1
1-2 奈米碳管的材料特性............................................................................6
1-3 奈米碳管製程………………………………...………………….…..…8
1-3-1 電弧放電法(arc-discharge)………………………………..…..8
1-3-2 雷射剝蝕法(laser ablation)……………………………………9
1-3-3化學氣相沉積法(chermical vapor deposition, CVD)……10
1-3-4 直接側向成長SWNTs………………………………….13
1-4 奈米碳管在電子元件上的應用……………………………...…….14
1.5 研究動機……………….….……………….……….….….……..……17
第二章 文獻回顧…………………………..…...…………………..….....19 2-1 奈米碳管直徑分佈對電性的影響…………………....……..….....19
2-2 奈米碳管直徑分佈控制……..…………………………..…………..27
2-2-1 乾式催化劑(dry catalyst)…………………………………….27
2-2-2 濕式催化劑(wet catalyst)……………………………………31
第三章 實驗設備與元件結構………………………………..……40
3.1 實驗設備...……………………………………………...………………40
3-1-1 熱裂解化學氣相沈積法(thermal pyrolysis CVD, thermal-CVD)系統……………………....…….....…………40
3-1-2 電子束微影設備(E-beam lithography, EBL)…………….44
3-1-3 電子槍蒸鍍設備(electron gun evaporation, E-gun evaporation)…………………………………………………..46
3-1-4 掃描式電子顯微鏡(scanning electron microscopy, SEM)…………………………….……………………………..47
3-1-5 多探針奈米電性量測系統(muti-probe nano-electronic measurement system,MPNEM system)………………....48
3-1-6 原子力顯微鏡(Atomic force microscopy, AFM)...….......49
3.2元件結構………………………………………….……...................…....52
3.3 奈米碳管的成長…………..........……………………………...…….54
3-3-1 雙層催化劑結構......................................................................55
3.4奈米碳管電晶體量測……………………………………....................58
第四章 結果與討論……………………………………………..…….60
4-1催化劑雙層結構上層SiO2鍍率對SWNTs直徑分佈的影響...60 4-2上層結構SiO2鍍率對CNT-FET電性的影響.…….…………….68
4-2-1 上層SiO2鍍率為0.5��/s時的電性......................................71
4-2-2 上層SiO2鍍率為2.0��/s時的電性......................................77
4-2-3 上層SiO2鍍率為4.0��/s時的電性......................................84
4-3 結果與討論……...………...............................................................…..90
第五章 結論…………………………………….....................………….. 101
5-1 CVD合成SWNTs臨場製作奈米碳管電晶體的優點..............101
5-2雙層催化劑結構的上層SiO2結構鍍率對SWNTs電性的影響
...........................................................................................................................102
5-3 雙層催化劑結構製作CNT-FETs...................................................103
附錄A......................................................................................................................105
附錄B......................................................................................................................107
附錄C......................................................................................................................109
參考文獻…………………………………………………………………..….111
Reference

[1] H. W. Kroto, J. R. Heath, S. C. O. Brien, R. F. Curl, and R. E
Smalley, Nature, 318, 162-163(1985).
[2] S. Iijima, Nature, 354, 56-58(1991,).
[3] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J.Vazquez, and R. Beyers, Nature 363, 605(1993).
[4] S. Iijima, and T. Ichihashi, Nature 363, 603(1993).
[5] Teri Wang Odom, et al., Nature 391, 62-64(1988).
[6] W. Hoenlein, et al., Material Science and Engineering C, 23, 663-669,(2003).
[7] P. Avouris, J. Appenzeller, R. Martel, and S. J. Wind, Proceeding of the IEEE, 91, 11,(2003).
[8] J. Liu, X. Li, A. Schrand, T. Ohashi, L. Dai, , Nano Letter, 17, 26, (2006).
[9] Mauricio Terrones, Annu. Rev. Mater. Res., 33, 419(2003).
[10] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Imperial College Press, London, 1998; R. Saito et al, Phys. Rev. B 46,(1992).
[11] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Academic Press, San Diego,(1996).
[12] Yahachi Saito, and Sashiro Uemura, Carbon, 38,169(2000).
[13] Alfredo M. Morales, and Charles M. Lieber, Science, 279, 209(1996).
[14] A. Thess, R. Lee, P. Nikolaev, H.J Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483-487(1996).
[15] M. S. Dresselhaus, G. Dresselhaus and Ph. Avouris(Eds.), Carbon nanotubes:Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin,(2001).
[16] C. Chen, W. Chen, and Y. Zhang, Physica E, 28, 121-127(2005).
[17] Yiming Li, David Mann, Marco Rolandi Woong Kim, Ant Ural, Steven Hung, Ali Javey, Jien Cao, Dunwei Wang, Erhan Yenilmez, Qian Wang, James F. Gibbons, Yoshio Nishi, and Hongjie Dai, Nano Letters, 4, 317(2004).
[18] W. Y. Lee , C.H. Weng, Z. Y. Juang, J. F. Lai, K. C. Leou, and C. H. Tsai, Diamond and Related Materials, 14, 1852(2005).
[19] W. Y. Lee , C.H. Weng, K. C. Leou, and C. H. Tsai. submit to Applied Physics Letters.
[20] B.Q. Wei, R. Vajtai, and P. M. Ajayan, Applied Physics Letters, 79, 1172-1174(2001).
[21] F. Kreupl, A. P. Graham, G. S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, W. Honlein, Microelectronic Engineering, 64, 399-408(2002).
[22] G. S. Duesberg, A. P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, W. Hoenlein, Nano Letters, 3 257-259(2003).
[23] A. Bachtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer, C. Schonenberger, Nature, 397, 673-675(1999).
[24] S. S. Wong, J. D. Harper, P. T. Lansbury, C. M. Lieber, Journal of the American Chemical Society, 120, 603-604(1998).
[25] A. Rinzler, G. Hafner, J. H., Nikolaev P., Lou L., Kim S. G., Tomanek D, Nordlander P, Colbert D. T., Smalley R. E., Science, 269, 1550-1553,(1995).
[26] J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. J. Dai, Nature, 395, 878-881(1998).
[27] W. Hoenlein, J. Jpn. Applied Physics Letters., 41, 4370-4374 Part1, 6B,(2002).
[28] Martel, R., et al., Applied Physics Letters, 73, 2447-2449(1998).
[29] Tans, S. J., A. R. M. Verschueren, and C. Dekker, Nature, 393, 49-52(1998).
[30] Robinson, L.A.W., et al., Nanotechnology, 14, 290-293(2003).
[31] Wind, S.J., et al., Applied Physics Letters, 80, 3817-3819(2002).
[32] Javey A., Guo J., Wang Q, Lundstrom M, and Dai H., Nature, 424, 654(2003).
[33] Kong J., Frankin N. R., Zhou C., Chapline M. G., Peng S. Cho K.-j., and Dai H., Science, 287, 622(2000).
[34] Tans S., Verschueren A., and Dekker C., Nature, 393, 49(1998).
[35] Yiming Li, Shu Peng, David Mann, Jien Cao, Ryan Tu, K. J. Cho ,and Hongjie Dai, Chemical Physics Letters B, 109, 6968(2005).
[36] Zhihong Chen, Joerg Appenzeller,, Joachim Knoch, Yu-ming Lin, and Phaedon Avouris, Nano Latter, 5, 1497(2005).
[37] Ali Javey and Hongjie Dai, J. AM. CHEM. SOC., 127, 11942-11943(2005).
[38] L. Delzeit, N. Chen, A. Cassell, R. Stevens, C. Nguyen and M. Meyyappan, Chemical Physics Letters, 348-374.(2001)
[39] Zhang R. Y., Amlani I., Baker J., Tresek J., Tsui R. K., and Fejes P. Nano Letter, 3, 731-735(2003).
[40] T. de los Arcos, Z. N. Wu, and P. Oelhafen, Chemical Physics Letters, 380, 419(2003).
[41] T. de los Arcos, M. G. Garnier, and P.Oelhafen, Carbon, 42, 187(2004).
[42] T. de los Arcos, M.G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen and D. Mathys, J. Phys. Chem. B, 108, 7728(2004).
[43] Y. Kobayashia, H. Nakashimaa, D. Takagib, and Y. Hommaa, Thin Solid Film, 286, 464-465(2004).
[44] Yiming Li, Woong Kim, Yuegang Zhang, Marco Rolandi, Dunwei Wang, and Hongjie Dai, J. Phys Chem. B, 105, 11424(2001).
[45] Shuhei Inoue, and Yoshihiro Kikuchi, Chemical Physics Letters, 410, 209(2005).
[46] Shuhei Inoue, Takeshi Nakajima, and Yoshihiro Kikushi, Chemical Physical Letters, 406, 184(2005).
[47] Masahiko Ishida, Hiroo Hongo, Fumiyuki Nihey, and Yukinori Ochiai, Japanese Journal of Applied Physics, 43, L1356(2004).
[48] Yo-Sep Min, Eun Ju Bae, Jong Bong Park, and Wanjun Park, Nanotechnology, 17, 116(2006).
[49] Hao Yu 1, Qiang Zhang, Qunfeng Zhang, Qixiang Wang, Guoqing Ning, Guohua Luo, and Fei Wei, Carbon, 44, 1706(2006).
[50] Chen, X.Q., et al., Applied Physics Letters, 78, 3714-3716(2001).
[51] B.W. Smith, et al., Applied Physics Letters, 77, 663-665(2000).
[52] Franklin, N.R. and H.J. Dai, Advanced Materials, 12, 890-894(2000).
[53] 吳宏益, 「Lateral Growth of Single-Walled Carbon Nanotube Using Double-Layered Catalyst Pads with Controllable Diameter Distribution」, 碩士論文, 國立清華大學 (中華民國 96年七月) 。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊