跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳沂蓉
研究生(外文):Yi-Jung Chen
論文名稱:奈米球微影術應用於建構奈米等級之二維金球陣列
論文名稱(外文):Construction of Two dimensional Au sphere array using Nanosphere lithography
指導教授:饒達仁曾繁根曾繁根引用關係
指導教授(外文):Da-Jeng YaoFan-Gang Tseng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:80
中文關鍵詞:奈米球微影術聚苯乙烯球奈米金球陣列奈米結構
相關次數:
  • 被引用被引用:4
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
單元尺寸小於100奈米的陣列結構,近年來被廣泛使用在感測、光學、生化、分子反應動力學、單分子檢測、電子學等領域,因此需要一個能快速且批次量產的製程。
由於光學物理效應的限制,最早被使用來生產奈微米元件的光學微影技術在百奈米以下的尺度已出現瓶頸,雖然以更短波長的光源進行曝光、或步進對準等方式可有效提升解析度,但改善仍屬有限,因而近期又發展出更多創新之技術如電子束微影、掃描探針微影、奈米球自組裝微影等。其中奈米球自組裝微影技術係透過聚苯乙烯或二氧化矽球之單/雙層自我組裝膜當成遮罩,進而製備奈微米陣列,其兼具便宜且能批次操作的優點,並能適用於各種基材。
本論文提出如何應用不同尺寸之聚苯乙烯球製備大小、間距不同的奈米金球結構,並調整酒精比例以增加奈米球排列面積,最後透過改變金薄膜的沉積厚度、調整薄膜蒸度角度、及加熱聚苯乙烯球等方式進一步縮小陣列結構的尺寸,成功製備出30-40奈米金球陣列。
在未來,本技術可實際運用於光晶體、資料儲存器、生物感測器、蛋白質晶片、DNA晶片及單分子檢測等領域。
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
第二章 文獻回顧 5
2.1 光學微影技術 5
2.2 電子束微影技術 7
2.3 X-光微影技術 8
2.4 離子束微影技術 9
2.5 掃描探針微影技術 10
2.5.1 原子力學顯微鏡或掃描隧道顯微鏡加脈衝偏壓 11
2.5.2 掃描隧道顯微鏡化學氣象沈積 12
2.5.3 掃描隧道顯微鏡局部電化學沈積 13
2.6 奈米轉印微影技術 14
2.7 奈米球自組裝微影術 17
第三章 實驗設計 21
3.1 奈米球自我組裝機制 21
3.2 自我組裝遮罩製備方法 22
3.2.1 垂直塗佈法 23
3.2.2 化學或電化學沉積法 25
3.2.3 物理性模板法 26
3.2.4 旋佈法 29
3.3 實驗流程設計 30
3.4 實驗藥品與材料 32
3.4.1 化學藥品 32
3.4.2 實驗材料 33
3.4.3 實驗儀器 33
3.5 實驗步驟 35
3.5.1 試片清潔 35
3.5.2 聚苯乙烯球溶液 35
3.5.3 奈米球遮罩製作 35
3.5.4 離子蝕刻機處理奈米球遮罩試片 36
3.5.5 金薄膜蒸鍍 36
3.5.6 奈米球舉離 36
3.5.7 金薄膜退火 37
第四章 結果與討論 38
4.1 聚苯乙烯球490 奈米 38
4.1.1 奈米球自組裝排列 38
4.1.2 二維奈米金屬陣列 41
4.1.2.1 奈米球遮罩試片直接蒸鍍金薄膜 41
4.1.2.2 RIE蝕刻奈米球遮罩試片 45
4.1.3 二維金屬奈米陣列退火 49
4.1.4 薄膜沈積角度的影響 51
4.1.5 金薄膜厚度探討 53
4.2 聚苯乙烯球1010奈米 55
4.2.1 奈米球自組裝排列 56
4.2.2 二維奈米金屬陣列 60
4.2.3 二維金屬奈米陣列退火 60
4.2.4 金球結構縮小 61
4.2.4.1 金薄膜沈積角度的影響 62
4.2.4.2 溫度、時間調控與結構變化 66
第五章 結論 75
參考文獻 78
[1] 涂熹娟, "單分子螢光檢測技術," Available from:http://www.bioon.com.cn/ewebeditor/uploadfile/2008-1/20080112200604951.pdf, 2008.
[2] V.Shklover and H.Hofmann, "Methods of Self-Assembling in Fabrication of Nanodevices," in Handbook of Semiconductor Nanostructures and Nanodevices. vol. 2, A. A. Balandin and K. L. Wang, Eds.: American Scientific 2006, pp. 181-213.
[3] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent, and I. K. Schuller, "Ordered magnetic nanostructures: fabrication and properties," Journal of Magnetism and Magnetic Materials, vol. 256, pp. 449-501, Jan 2003.
[4] 鄭瑞庭, 蔡宏營, 林熙翔, 蘇建彰, and 陳建洋, "簡介下世代微影技術與奈米轉印微影技術," 機械工業雜誌, vol. 245 期, pp. 106-116.
[5] G. M. Whitesides and J. C. Love, "The art of building small - Researchers are discovering cheap, efficient ways to make structures only a few billionths of a meter across," Scientific American, vol. 285, pp. 38-47, Sep 2001.
[6] M. Alexe, C. Harnagea, and D. Hesse, "Non-conventional micro- and nanopatterning techniques for electroceramics," Journal of Electroceramics, vol. 12, pp. 69-88, Jan-Mar 2004.
[7] K. Bessho, Y. Iwasaki, and S. Hashimoto, "Fabricating nanoscale magnetic mounds using a scanning probe microscope," Journal of Applied Physics, vol. 79, pp. 5057-5059, Apr 1996.
[8] K. Bessho, Y. Iwasaki, and S. Hashimoto, "Nanoscale magnetic mounds fabricated using a scanning probe microscope," Ieee Transactions on Magnetics, vol. 32, pp. 4443-4447, Sep 1996.
[9] S. Wirth and S. von Molnar, "Hall cross size scaling and its application to measurements on nanometer-size iron particle arrays," Applied Physics Letters, vol. 76, pp. 3283-3285, May 2000.
[10] D. D. Awschalom, M. A. McCord, and G. Grinstein, "Observation of macroscopic spin phenomena in nanometer-scale magnets," Physical Review Letters, vol. 65, p. 783, 1990.
[11] W. Schindler, D. Hofmann, and J. Kirschner, "Nanoscale electrodeposition: A new route to magnetic nanostructures?," 2000, pp. 7007-7009.
[12] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," The Journal of Vacuum Science and Technology B vol. 14 pp. 4129-4133, 1996.
[13] L. J. Guo, "Nanoimprint lithography: Methods and material requirements," Advanced Materials, vol. 19, pp. 495-513, Feb 19 2007.
[14] S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, "Sub-10 nm imprint lithography and applications," Journal of Vacuum Science & Technology B, vol. 15, pp. 2897-2904, Nov-Dec 1997.
[15] S. P. Li, A. Lebib, D. Peyrade, M. Natali, and Y. Chen, "Microplow-row lithography and fabrication of submicrometer magnetic structures," Applied Physics Letters, vol. 77, pp. 2743-2745, 2000.
[16] X. Zhang, A. V. Whitney, J. Zhao, E. M. Hicks, and R. P. Van Duyne, "Advances in contemporary nanosphere lithographic techniques," Journal of Nanoscience and Nanotechnology, vol. 6, pp. 1920-1934, 2006.
[17] G. Zhang, D. Y. Wang, and H. Mohwald, "Ordered binary arrays of Au nanoparticles derived from colloidal lithography," Nano Letters, vol. 7, pp. 127-132, Jan 2007.
[18] S. M. Yang, S. G. Jang, D. G. Choi, S. Kim, and H. K. Yu, "Nanomachining by colloidal lithography," Small, vol. 2, pp. 458-475, Apr 2006.
[19] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "MECHANISM OF FORMATION OF 2-DIMENSIONAL CRYSTALS FROM LATEX-PARTICLES ON SUBSTRATES," Langmuir, vol. 8, pp. 3183-3190, Dec 1992.
[20] H. Kobayashi, N. Moronuki, and A. Kaneko, "Self-assembly of fine particles applied to the production of antireflective surfaces," International Journal of Precision Engineering and Manufacturing, vol. 9, pp. 25-29, Jan 2008.
[21] T. M. Blattler, A. Binkert, M. Zimmermann, M. Textor, J. Voros, and E. Reimhult, "From particle self-assembly to functionalized sub-micron protein patterns," Nanotechnology, vol. 19, pp. -, Feb 20 2008.
[22] R. Aveyard, J. H. Clint, D. Nees, and V. N. Paunov, "Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces," Langmuir, vol. 16, pp. 1969-1979, Feb 2000.
[23] T. S. Horozov, R. Aveyard, J. H. Clint, and B. P. Binks, "Order-disorder transition in monolayers of modified monodisperse silica particles at the octane-water interface," Langmuir, vol. 19, pp. 2822-2829, Apr 1 2003.
[24] F. Pan, J. Y. Zhang, C. Cai, and T. M. Wang, "Rapid fabrication of large-area colloidal crystal monolayers by a vortical surface method," Langmuir, vol. 22, pp. 7101-7104, Aug 15 2006.
[25] J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Physical Review Letters, vol. 84, pp. 2997-3000, Mar 27 2000.
[26] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, "Directed self-assembly of spherical particles on patterned electrodes by an applied electric field," Advanced Materials, vol. 17, pp. 1507-1511, Jun 17 2005.
[27] R. C. Hayward, D. A. Saville, and I. A. Aksay, "Electrophoretic assembly of colloidal crystals with optically tunable micropatterns," Nature, vol. 404, pp. 56-59, Mar 2 2000.
[28] Y. D. Yin, Y. Lu, and Y. N. Xia, "A self-assembly approach to the formation of asymmetric dimers from monodispersed spherical colloids," Journal of the American Chemical Society, vol. 123, pp. 771-772, Jan 31 2001.
[29] Y. N. Xia, Y. D. Yin, Y. Lu, and J. McLellan, "Template-assisted self-assembly of spherical colloids into complex and controllable structures," Advanced Functional Materials, vol. 13, pp. 907-918, Dec 2003.
[30] D. Y. Wang and H. Mohwald, "Rapid fabrication of binary colloidal crystals by stepwise spin-coating," Advanced Materials, vol. 16, pp. 244-247, Feb 3 2004.
[31] 莊尚餘, 陳學禮, 鄭旭君, 王鉦元, 朱鐵吉, and 林俊宏, "金奈米粒子之特殊光學特性與應用之研究," 奈米通訊, vol. 第十二卷, pp. 8-15.
[32] W. K. H. G. M. G. Adam Kosiorek, "Fabrication of Nanoscale Rings, Dots, and Rods by Combining Shadow Nanosphere Lithography and Annealed Polystyrene Nanosphere Masks," small, vol. 1, pp. 439-444, 2005.
[33] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, "Metal Nanocrystal Memories—Part I: Device Design and Fabrication," IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 49, pp. 1606-1613, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top