(3.238.36.32) 您好!臺灣時間:2021/02/27 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊幼如
研究生(外文):Yu-ju Chuang
論文名稱:利用放電紡絲技術合成二氧化矽奈米纖維之研究
論文名稱(外文):Synthesis silica nanofibers by electrospinning
指導教授:傅耀賢傅耀賢引用關係
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:材料科學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:106
中文關鍵詞:聚乙烯醇縮丁醛溶膠-凝膠法放電紡絲法二氧化矽奈米纖維
外文關鍵詞:Electrospinning[poly(vinyl butyral) (PVB)]sol-gel processsilica nanofibers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:475
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:0
本論文以放電紡絲法與溶膠-凝膠法合成二氧化矽奈米纖維,將具黏性的聚乙烯醇縮丁醛(PVB)加入二氧化矽前驅物(SiO2 precursor),經由熱處理500℃可以得到二氧化矽奈米纖維。由SEM觀察出表面形態及纖維直徑約120-190nm,XRD圖看出經由熱處理500℃後仍為非晶相二氧化矽。二氧化矽奈米纖維產物的特性依幾項變因而定,包含了前驅物的黏度、針頭內徑、電壓、流速和針尖至收集板的距離。我們測量溶液的黏度,發現黏度範圍介於25-35cP時有最佳紡絲效果。最後,加入溴化十六烷基三甲基銨鹽(CTAB)製備出棒狀二氧化矽奈米纖維,實驗結果顯示放電紡絲最佳的操作參數包含了最小針頭內徑為0.16mm,最低流速為0.1ml/h,而應用電壓為12kV,針尖離收集板的距離為10cm時,可以得到最佳的實驗結果。藉由SEM與BET做對照,發現二氧化矽奈米纖維平均直徑約介於80-110nm,孔洞直徑2.33-3.09nm、總孔洞體積為0.19-0.23 cm3/g 且比表面積為259-338 m2/g。
In this study, silica nanofibers were synthesized by electrospinning and Sol-Gel process. A viscous solution of [poly(vinyl butyral) (PVB)] was used into the silica precursor, followed by heat treatment temperature at 500oC to obtain silica nanofibers. SEM images show their morphology and fibers diameter about 120-190nm. XRD patterns of the silica nanofibers exhibits the characteristics of amorphous after heat treatment. The properties of silica nanofibers produces depend on many process variables including the nanofiber precursor viscosity, the needle inner diameter, the magnitude of the applied voltage and volume feed rate, and the work distance between the needle and the collector. We measured the viscosity of our electrospinning solutions , a viscosity are spinning in the range of 25-35 cP works well. Finally a cetyl trimethyl-ammonium bromide(CTAB) was employed to prepare silica rodlike-nanofibers. The result indicated the best processing parameters to electrospinning including the smallest available needle of inner diameter of 0.16 mm; low volume feed rate of 0.1 ml/h; applied voltage of 12 kV and tip collector distance of 10 cm, excellent results were achieved. Both of nanofibers and nanorods were characterized by SEM and BET. The silica nanofibers had an average diameter about 80-110 nm, the pore diameter about 2.33-3.09nm, total pore volume were 0.19-0.23cm3/g and have high specific surface area were 259-338 m2/g.
中文摘要..................................................I
英文摘要.................................................II
誌 謝....................................................Ⅲ
目 錄·························· · Ⅳ
表目錄························· · Ⅷ
圖目錄···························Ⅸ
第一章 緒論························ 1
1.1前言·················································· 1
1.2二氧化矽(Silica,SiO2)簡介··························2
1.3二氧化矽之應用········································3
1.4二氧化矽製備方法······································7
1.4.1溶膠-凝膠法(Sol-Gel process)······················8
1.5 放電紡絲法(Electrospinning)························9
1.5.1放電紡絲法之優缺點······················ ······· · 9
1.6研究動機及目的·······································11
第二章 文獻回顧·········································12
2.1二氧化矽製備理論·················· ·12
2.2溶膠-凝膠法反應機制··································14
2.2.1影響溶膠-凝膠反應之參數·· ········17
2.3聚乙烯醇縮丁醛······················ ·22
2.4放電紡絲原理······················23
2.4.1放電紡絲裝置·······································24
2.4.2影響放電紡絲的因素·································25
2.4.2.1探討放電紡絲實驗變因·····························27
第三章 實驗方法與分析設備 ······························41
3.1實驗藥品·············································41
3.2實驗儀器與設備································· ····42
3.3實驗方法·············································43
3.3.1製備二氧化矽前驅物溶液·····························46
3.3.2製備聚乙烯醇縮丁醛溶液························· 46
3.3.3加入界面活性劑·····································46
3.4放電紡絲儀器裝置·····································47
3.4.1放電紡絲儀器操作及纖維製備步驟·················· 47
3.5 分析儀器量測方法····································48
3.5.1黏度計··········································· 48
3.5.2掃描式電子顯微鏡(SEM)····························49
3.5.3熱重分析儀(TGA)··································49
3.5.4 X-ray繞射儀(XRD)································50
3.5.5能量散佈能譜儀(EDS)······························50
3.5.6傅立葉轉換紅外線光譜儀(FTIR)·····················50
3.5.7比表面積測定儀(BET)······························51
第四章 結果與討論···················· 53
4.1 放電紡絲設備裝置可行性······························53
4.2 製備二氧化矽溶膠之參數探討··························54
4.2.1前驅物之莫耳比例對纖維直徑的影響···················54
4.3 配置PVB之重量百分濃度·············· 58
4.3.1 SiO2/PVB之溶質重量比······························61
4.4 放電紡絲操作變因控制································65
4.4.1針頭尺寸···········································66
4.4.2電壓···············································68
4.4.3溶液流速···········································70
4.4.4工作距離·······················73
4.4.5添加界面活性劑··································· 75
4.5 物性分析結果········································76
4.5.1熱重損失分析(TGA) ······························· 76
4.5.2傅利葉轉換紅外線光譜(FTIR) ························78
4.5.3二氧化矽奈米纖維之X-ray 繞射·······················79
4.5.4二氧化矽奈米纖維之元素分析(EDS)····· ············81
4.5.5二氧化矽奈米纖維之比表面積測定·····················82
第五章 結論······················· 89
參考文獻····································· ···· ·91
1. 馬振基,奈米材料科技原理與應用,全華科技圖書,2003
2. P. Ball and L. Garwin, Nature, 1992, 355, 761
3. W. P. Halperin, Rev. Mod. Phys., 1986, 58, 533
4. S. Iijima, Nature, 1991, 354, 56
5. 合成二氧化矽的特性與用途,高分子工業,1998年10月,72
6. 王惠君,中原大學化學工程學系碩士學位論文,2004
7. 呂嘉敏,朝陽科技大學環境工程與管理系碩士學位論文,2003 8. J. E. Panels, Y. L. Joo, Journal of Nanomaterials, 2006, 41327, 1
9. C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, S. J. Park, Mater. Lett. 2003, 57, 1579
10. G. Zhang, W. Kataphinan, D. H. Reneker, Mater. Sci. Eng. B,2005, 116, 353
11. N. Husing, U. Schubert, Angew. Chem. Int. Ed., 1998, 37, 22
12. 科學發展,402,2006年6月,60
13. J. Fricke, Spektrum der Wissenschaft, Sci. Am., 1988, 256, 92
14. 陳光華,奈米薄膜技術與應用,五南出版社,2005
15. Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, Comosites science and technology, 2003, 2223
16. G. Taylor, Proc Roy Soc London A,1969, 313
17. K. Ko. Frank, Nanofiber Technology:Pa.19104, 2004, U.S.A
18. M. M. Bergshoef, G. J . Vancso, Adv. Mater., 1999, 11, 1362
19. P. W. Gibson, H. L. Schreuder, D. Rivin, AIChE J , 1999, 45, 190
20. L. Huang, R. A. Mcmillan, R. P. Apkarian, B. Pourdeyhimi, V. P . Contiticello, E. L.Chaikof, Macromolecules, 2000, 33, 2989
21. M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, A. Greiner, Adv. Mater., 2000, 12, 637
22. P. Gibson, H. L. Schreuder-Gibson, D. Rivin, Colloids and Surfaces A, 2001, 187, 469
23. C. J. Buchko, K. M. Kozloff, D. C. Martin, Biomaterials, 2001, 22, 1289
24. M. Vert, S. Li, H. Garreau, Clin Mater., 1992, 10, 3 25. Holten, Verlag Chemie., 1971, 221
26. B. S. Hsiao, B. Chu., Polymer, 2002, 43, 4403
27. D.H. Reneker, H.Fong, American Chemical Society, 2003, 44
28. C. Kim, K. S. Yanga, Faculty of Applied Chemical Engineering Chonnam, 2003, 113
29. C. Kim, K. S. Yanga, Department of Chemistry and Chemical Engineering, 2004,
30. K. Graham, M. Ouyang, T. Raether, T. Grafe, B. McDonald, Paul Knauf Donaldson Co., 2001,
31. Ebelmen, J. J. Ann, 1846, 57, 331
32. W. Geffcken, E. Berger, German Paten, 1939, 736, 411 33. 丁原傑,化工技術,第46卷第5期,1999,63
34. 周禮君,田珮,化工技術,第8卷第5期,2000 ,152
35. 王偉洪,化工技術,第46卷第5期,1999,81
36. H. Schroeder, Phys. Thin Film, 1969, 5, 87
37. L. Levene, I. M. Thomas, U.S. Patent 3, 1972, 640, 93
38. H. Dislich, Angew. Chem. Int. Ed., 1971, 10, 363
39. T. Engel, G. Ert1, J Chen.Phys., 1978, 691, 267
40. B. Jirgensons, M. E. Stranmains, Colloid Chemistry, New York, 1962.
41. M. Ochi, R. Takahashi, J. polymer Science Part B:Polymer Physics, 2001, 39, 1071
42. L. Matejka, K. Dusek, J. Plestil, J. Kriz, F. Lednicky , Polymer, 1998, 40, 171
43. C. J. Brinker, J. Non-Cryst. Solid, 1988, 100, 31
44. B. Himmel, T. Gerber, H. Burger, J. Non-crystal. Sol, 1987, 91, 122
45. T. Satoh, M. Akitaya, M. Konno, S. Saito, Journal of Chemical Engineering of Japan, 1997, 30, 759
46. P. T. Sarjeant, R. Roy, J. American Ceramic Society, 1969, 52, 57.
47. C. J. Brinker, G. W. Scherer, Academic Press, 1990, 48. R. K. Iler, Wiley, New York, 1979
49. K. S. Chou, C. C. Chen, Advances in Technology of Materials and Materials Processing Journal, 2003, 5, 31 50. L. Zhao, J. G. Yu, B. Cheng, X. J. Zhao, Ziran Kexueban, 2003, 61, 562
51. J. Wang, C. K. Tsung, R. C. Hayward, Y. Y. Wu, G. D. Stucky, Angew. Chem. Int. Ed., 2005, 44, 332
52. A. Formhals, US patent, 1934, 1975504
53. A. Formhals, US patent, 1939, 2160962
54. G. I. Taylor, Proc R Soc Lond A , 1964, 280, 383
55. L. Larrondo, R.S. Manley, J. Polym Sci Polym Phys Ed, 1981,19, 909
56. H. Fong, I. Chun, D.H. Reneker, Polymer, 1999, 40, 4585
57. Y. Hong, T. Shang, Y. Li, L. Wang, C. Wang, X. Chen, X. Jing, Journal of Membrane Science,2006, 276 , 1
58. D. H. Reneker, I. Chun, Nanotechnology, 1996, 7, 216 59. S. H.Tan, R. Inai, M. Kotaki, S. Ramakrishna, Polymer, 2005, 46, 6128
60. S. Wongsasulak, K.M. Kit, D. J. McClements, T. Yoovidhya, J. Weiss.Polymer, 2007, 48 , 448
61. S. S. Choi, S. G. Lee, S. S. Im, S. H. Kim, J. Mater Sci Lett., 2003, 22, 891
62. S. J. Choi, H.C.Park, J. Mater. Sci. Lett. 2004, 39, 1037
63. Y. Y. Zhao, H. Y. Wang, X.F. Lu, X. Li, Y. Yang, C. Wang, Materials Letters, 2008, 62, 143
64. S. Brunauer, P. H. Emmett, E. Teller, J.Am.Chem.Soc., 1938, 60, 309
65. IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem., 1972, 31, 578
66.C. Wang, C. H. Hsu, J. H. Lin, Macromolecules, 2006, 39, 7662
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔