|
[1] R.B. Bapat, A constructive proof of a permutation-based generalization of Sperner's lemma, Math. Program. 44 (1989), 113-120. [2] K. Fan, Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral triangulation, J. Comb. Theory 2 (1967), 588-602. [3] D. Gale, Equilibrium in a discrete exchange economy with money, Internat. J. Game Theory 13 (1984), 61-64. [4] Y.A. Hwang and M.H. Shih, Equilibrium in a market game, Economic Theory 31 (2007), 387-392. [5] B. Knaster, C.Kuratowski, S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137. [6] H.W. Kuhn, A new proof of the fundamental theorem of algebra, Math. Program. Study 1 (1974), 148-158. [7] S.N. Lee and M.H. Shih, A counting lemma and multiple combinatorial Stokes' theorem, European J. Combin. 19 (1998), 969-979. [8] S.N. Lee and M.H. Shih, A structure theorem for coupled balanced games without side payments (Nonlinear Analysis and Convex Analysis), RIMS Kokyuroku 1484(2006), 69-72. [9] F. Meunier, Combinatorial Stokes' formulae, European J. Combin. 29 (2008), 286-297. [10] H. Scarf, The approximation of fixed points of continuous mapping, SIAM J. Appl. Math. 15 (1967), 1328-1343. [11] L.S. Shapley, On balanced games without side payments. In Hu, T.C., Robinson, M.(eds.) Mathematical Program. Math. Res. Cent. Publ. (New York: Academic Press) 30 (1973), 261-290. [12] M.H. Shih and S.N. Lee, A combinatorial Lefschetz fixed-point formula, J. Combin. Theory Ser. A 61 (1992), 123-129. [13] M.H. Shih and S.N. Lee, Combinatorial formulae for multiple set-valued labellings, Math. Ann. 296 (1993), 35-61. [14] E. Sperner, Neuer Beweis fur die Invarianz der Dimensionzahl und des Gebietes, Abh. Math. Sem. Univ. Hamburg 6 (1928), 265-272. [15] A.W. Tucker, Some topological properties of disk and sphere, in: Proc. of the First Canadian Mathematical Congress, Montreal (1945), 285-309.
|