跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱柏嘉
研究生(外文):Po-Chia Chiu
論文名稱:Amh和Amh受器在黑鯛生殖腺發育與性轉變的表現
論文名稱(外文):The expression of Amh and Amh receptor during gonad development and sex change in protandrous black porgy, Acanthopagrus schlegeli.
指導教授:張清風張清風引用關係
指導教授(外文):Ching-Fong Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:性別分化性轉變
外文關鍵詞:sex diferentiationsex changeAnti-Mullerian hormoneAnti-Mullerian hormone type II receptor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
抗穆勒氏管荷爾蒙 (Anti-Mullerian hormone, AMH) 在哺乳類動物雄性發育過程中扮演重要的角色,主要為抑制雌性生殖組織Mullerian duct。近來amh及其主要受器 (Anti-Mullerian hormone type II receptor, amhrII) 從不具該構造之硬骨魚類中選殖出來,並發現具有促進生殖細胞發育的功能。目前在魚類性別分化與性轉變機制的研究尚不完全,所具有的性別型態十分多樣化,黑鯛為一種雌雄同體雄性先熟型的魚類,此一體內兩性生殖腺同時共存的環境,十分適合用來觀察精巢與卵巢發育時的相互關係。因此,本研究之目的在藉由觀察amh與amhrII在黑鯛在雄性發育、人工誘導雌性發育和性轉變時精巢與卵巢表現量的變化,並加以剖析其意義。並以具有細胞增生指標意義的pcna及細胞凋亡指標意義的caspase-3,就其基因表現推論精巢與卵巢發育的情形。結果顯示,在雄性發育的過程中精巢的amh與amhrII表現量皆遠大於卵巢,相反的在人工誘導雌性發育及自然性轉變的過程中,卵巢amh與amhrII的表現量皆有明顯提昇,甚至超過精巢。由上述實驗結果推測,在一和二年amh與amhrII在精巢表現量高因而與雄性生殖細胞生長相關,而在卵巢因amhrII的表現低,相對對Amh不夠敏感。直到第三年有性轉變之黑鯛卵巢,其amhrII表現均高於精巢,此時可能與雌性生殖細胞生長相關,進而趨向雌性發展。總之,amh及amhrII在生殖腺的發育中參與並扮演重要角色。
Anti-Mullerian hormone (AMH) plays an important role in the process of mammalian male development, which major function is inhibition of Mullerian duct activity of female reproduction tissue. Aecently, amh and its type II receptor, amhrII have been cloned from teleosts, which do not contain the tissue of Mullerian duct. The functions of Amh and AmhrII in teleost are not clean. The present study aimed to clone amhrII and investigate the amh and amhrII expression levels in testis and ovary during the male development, artificial-induced female development, and sex change in black porgy. Two gene related to the development status of testis and ovary, one was pcna, which is related to cell proliferation, and the other was caspase-3, which is related to cell apoptosis. The data showed that the expression level is of amh and amhrII in testis were hisher than those in ovary during male development. However, the expression levels of amh and amhrII in ovary were hisher than those in testis during nature sex reverse or artificial-induced female development. This result suggested that high expression levels of amh and amhrII in testis are related to the growth of male germ cell in early one to two years. Thus, amhrII had low expression level in ovary in early one or two years. When black porgy grew to the three year, the sex reversed-black porgy had high expression level of amhrII in ovary than that in testis. These data suggest that amhrII has the function to regulate amh and has the effect to promote growing of male and female germ cells in black porgy.
謝誌……………………………………………………………………………I
中文摘要………………………………………………………………………II
英文摘要………………………………………………………………………III
目錄……………………………………………………………………………IV
圖表目錄………………………………………………………………………VI
第一章、 文獻總論…………………………………………………………1
1、性別的決定…………………………………………………………………1
2、性別的分化…………………………………………………………………2
3、生殖腺體細胞的發育………………………………………………………3
4、性別決定基因………………………………………………………………3
5、抗穆勒氏管荷爾蒙…………………………………………………………5
6、抗穆勒氏管荷爾蒙主要受器………………………………………………7
7、魚類性別分化………………………………………………………………9
8、研究緣起……………………………………………………………………10
9、研究目的……………………………………………………………………11
第二章、 基因選殖與即時定量系統之建立…………………………………12
1、前言…………………………………………………………………………12
2、實驗魚種……………………………………………………………………13
3、實驗設計……………………………………………………………………13
4、實驗方法……………………………………………………………………14
5、實驗材料……………………………………………………………………20
6、結果…………………………………………………………………………22
7、討論…………………………………………………………………………24
第三章、 黑鯛amhrII、pcna和caspase-3在性別分化時的表現特性…37
1、前言…………………………………………………………………………37
2、實驗設計與方法……………………………………………………………38
3、結果…………………………………………………………………………40
4、討論…………………………………………………………………………41
第四章、 黑鯛一至三年齡amh、amhrII、pcna和caspase-3的變化…48
1、前言…………………………………………………………………………48
2、實驗設計與方法……………………………………………………………49
3、結果…………………………………………………………………………50
4、討論…………………………………………………………………………52
第五章、 結論…………………………………………………………………60
引用文獻………………………………………………………………………61
Arango, N. A., Lovell-Badge, R., Behringer, R. R., 1999. Targeted mutagenesis of the endogenous mouse Mis gene promoter: In vivo definition of genetic pathways of vertebrate sexual development. Cell 99, 409-419.
Baarends, W. M., Hoogerbrugge, J. W., Post, M., Visser, J. A., Derooij, D. G., Parvinen, M., Themmen, A. P. N., Grootegoed, J. A., 1995. Anti-Mullerian hormone and anti-Mullerian hormone type-II receptor messenger-ribonucleic-acid expression during postnatal testis development and in the adult testis of the rat. Endocrinology 136, 5614-5622.
Baarends, W. M., Vanhelmond, M. J. L., Post, M., Vanderschoot, P., Hoogerbrugge, J. W., Dewinter, J. P., Uilenbroek, J. T. J., Karels, B., Wilming, L. G., Meijers, J. H. C., Themmen, A. P. N., Grootegoed, J. A., 1994. A novel member of the transmembrane serine/threonine kinase receptor family is specifically expressed in the gonads and in mesenchymal cells adjacent to the Mullerian duct. Development 120, 189-197.
Baroiller, J. F., D'Cotta, H., 2001. Environment and sex determination in farmed fish. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 130, 399-409.
Behringer, R. R., Finegold, M. J., Cate, R. L., 1994. Mullerian-inhibiting substance function during mammalian sexual development. Cell 79, 415-425.
Birk, O. S., Casiano, D. E., Wassif, C. A., Cogliati, T., Zhao, L. P., Zhao, Y. G., Grinberg, A., Huang, S. P., Kreidberg, J. A., Parker, K. L., Porter, F. D., Westphal, H., 2000. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909-913.
Bowles, J., Schepers, G., Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239-255.
Bull, J. J., Bulmer, M. G., 1989. Longevity enhances selection of environmental sex determination. Heredity 63, 315-320.
Bustin, S. A., 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169-193.
Cate, R. L., Mattaliano, R. J., Hession, C., Tizard, R., Farber, N. M., Cheung, A., Ninfa, E. G., Frey, A. Z., Gash, D. J., Chow, E. P., Fisher, R. A., Bertonis, J. M., Torres, G., Wallner, B. P., Ramachandran, K. L., Ragin, R. C., Manganaro, T. F., Maclaughlin, D. T., Donahoe, P. K., 1986. Isolation of the bovine and human genes for mullerian inhibiting substance and expression of the human-gene in animal-cells. Cell 45, 685-698.
Chan, S. T. H., Yeung, W. S. B., 1983. Sex control and sex reversal in fish under natural conditions. Fish Physiology 9, 171-222.
Chang, C. F., Lau, E. L., Lin, B. Y., 1995. Stimulation of spermatogenesis or of sex reversal according to the dose of exogenous estradiol-17 beta in juvenile males of protandrous black porgy, Acanthopagrus schlegeli. Gen. Comp. Endocrinol. 100, 355-367.
Chang, C. F., Lee, M. F., Chen, G. R., 1994. Estradiol-17-beta associated with the sex reversal in protandrous black porgy, Acanthopagrus schlegeli. J. Exp. Zool. 268, 53-58.
Chang, C. F., Lin, B. Y., 1998. Estradiol-17 beta stimulates aromatase activity and reversible sex change in protandrous black porgy, Acanthopagrus schlegeli. J. Exp. Zool. 280, 165-173.
Chang, C. F., Yueh, W. S., 1990. Annual cycle of gonadal histology and steroid profiles in the juvenile males and adult females of the protandrous black porgy, Acanthopagrus schlegeli. Aquaculture 91, 179-196.
Collins, M. L., Zayati, C., Detmer, J. J., Daly, B., Kolberg, J. A., Cha, T. A., Irvine, B. D., Tucker, J., Urdea, M. S., 1995. Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Anal. Biochem. 226, 120-129.
Colvin, J. S., Green, R. P., Schmahl, J., Capel, B., Ornitz, D. M., 2001. Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104, 875-889.
Crews, D., 1996. Temperature-dependent sex determination: The interplay of steroid hormones and temperature. Zool. Sci. 13, 1-13.
Diclemente, N., Wilson, C., Faure, E., Boussin, L., Carmillo, P., Tizard, R., Picard, J. Y., Vigier, B., Josso, N., Cate, R., 1994. Cloning, expression, and alternative splicing of the receptor for anti-Mullerian hormone. Mol. Endocrinol. 8, 1006-1020.
Dubin, R. A., Ostrer, H., 1994. SRY is a transcriptional activator. Mol. Endocrinol. 8, 1182-1192.
Durlinger, A. L. L., Visser, J. A., Themmen, A. P. N., 2002. Regulation of ovarian function: the role of anti-Mullerian hormone. Reproduction 124, 601-609.
Erdman, S. E., Burtis, K. C., 1993. The drosophila doublesex proteins share a novel zinc finger related DNA-binding domain. Embo J. 12, 527-535.
Eusebe, D. C., diClemente, N., Rey, R., Pieau, C., Vigier, B., Josso, N., Picard, J. Y., 1996. Cloning and expression of the chick anti-Mullerian hormone gene. Journal of Biological Chemistry 271, 4798-4804.
Fechner, P. Y., 1996. The role of SRY in mammalian sex determination. Acta Pediatr. Jpn. 38, 380-389.
Foster, J. W., Dominguezsteglich, M. A., Guioli, S., Kwok, C., Weller, P. A., Stevanovic, M., Weissenbach, J., Mansour, S., Young, I. D., Goodfellow, P. N., Brook, J. D., Schafer, A. J., 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525-530.
Hunter, G. A., Donaldson, E. M., 1983. Hormonal sex control and its application to fish culture. Fish Physiology 9, 223-303.
Imbeaud, S., Faure, E., Lamarre, I., Mattei, M. G., Diclemente, N., Tizard, R., Carreeusebe, D., Belville, C., Tragethon, L., Tonkin, C., Nelson, J., McAuliffe, M., Bidart, J. M., Lababidi, A., Josso, N., Cate, R. L., Picard, J. Y., 1995. Insensitivity to anti-Mullerian hormone due to a mutation in the human anti-Mullerian hormone-receptor. Nature Genet. 11, 382-388.
Josso, N., di Clemente, N., Gouedard, L., 2001. Anti-Mullerian hormone and its receptors. Mol. Cell. Endocrinol. 179, 25-32.
Josso, N., Racine, C., di Clemente, N., Rey, R., Xavier, F., 1998. The role of anti-Mullerian hormone in gonadal development. Mol. Cell. Endocrinol. 145, 3-7.
Kelman, Z., 1997. PCNA: Structure, functions and interactions. Oncogene 14, 629-640.
Kettlewell, J. R., Raymond, C. S., Zarkower, D., 2000. Temperature-dependent expression of turtle Dmrt1 prior to sexual differentiation. Genesis 26, 174-178.
Kevenaar, M. E., Meerasahib, M. F., Kramer, P., de Lang-Born, B. M. N., de Jong, F. H., Groome, N. P., Themmen, A. P. N., Visser, J. A., 2006. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology 147, 3228-3234.
Klein, S. L., Strausberg, R. L., Wagner, L., Pontius, J., Clifton, S. W., Richardson, P., 2002. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev. Dyn. 225, 384-391.
Kluever, N., Pfennig, F., Pala, I., Storch, K., Schlieder, M., Froschauer, A., Gutzeit, H. O., Schartl, M., 2007. Differential expression of anti-Mullerian hormone (Amh) and anti-Mullerian an hormone receptor type II (AmhrII) in the teleost medaka. Dev. Dyn. 236, 271-281.
Kondo, M., Hornung, U., Nanda, I., Imai, S., Sasaki, T., Shimizu, A., Asakawa, S., Hori, H., Schmid, M., Shimizu, N., Schartl, M., 2006. Genomic organization of the sex-determining and adjacent regions of the sex chromosomes of medaka. Genome Res. 16, 815-826.
Kondo, M., Nanda, I., Hornung, U., Asakawa, S., Shimizu, N., Mitani, H., Schmid, M., Shima, A., Schartl, M., 2003. Absence of the candidate male sex-determining gene dmrt1b(Y) of medaka from other fish species. Curr. Biol. 13, 416-420.
Kondo, T., Yokokura, T., Nagata, S., 1997. Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proc. Natl. Acad. Sci. U. S. A. 94, 11951-11956.
Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P., Lovellbadge, R., 1991. Male development of chromosomally female mice transgenic for SRY. Nature 351, 117-121.
Kreidberg, J. A., Sariola, H., Loring, J. M., Maeda, M., Pelletier, J., Housman, D., Jaenisch, R., 1993. WT-1 is required for early kidney development. Cell 74, 679-691.
Lasala, C., Carre-Eusebe, D., Picard, J. Y., Rey, R., 2004. Subcellular and molecular mechanisms regulating anti-Mullerian hormone gene expression in mammalian and nonmammalian species. DNA Cell Biol. 23, 572-585.
Lee, F. Y., Chang, C. F., 1997. The concentrations of vitellogenin (vitellin) and protein in hemolymph, ovary and hepatopancreas in different ovarian stages of the freshwater prawn, Macrobrachium rosenbergii. Comp. Biochem. Physiol. A-Physiol. 117, 433-439.
Lee, Y. H., Du, J. L., Yueh, W. S., Lee, F. Y., Tanaka, H., Chang, C. F., 1999. 17 beta-Estradiol, but not testosterone stimulates gonadotropin II concentrations in the protandrous black porgy, Acanthopagrus schlegeli Bleeker. Fish Physiol. Biochem. 21, 345-351.
Lee, Y. H., Du, J. L., Yueh, W. S., Lin, B. Y., Huang, J. D., Lee, C. Y., Lee, M. F., Lau, E. L., Lee, F. Y., Morrey, C., Nagahama, Y., Chang, C. F., 2001. Sex change in the protandrous black porgy, Acanthopagrus schlegeli: A review in gonadal development, estradiol, estrogen receptor, aromatase activity and gonadotropin. J. Exp. Zool. 290, 715-726.
Lee, Y. H., Wu, G. C., Du, J. L., Chang, C. F., 2004. Estradiol-17 beta induced a reversible sex change in the fingerlings of protandrous black porgy, Acanthopagrus schlegeli bleeker: The possible roles of luteinizing hormone in sex change. Biol. Reprod. 71, 1270-1278.
Lee, Y. H., Yueh, W. S., Du, J. L., Sun, L. T., Chang, C. F., 2002. Aromatase inhibitors block natural sex change and induce male function in the protandrous black porgy, Acanthopagrus schlegeli Bleeker: Possible mechanism of natural sex change. Biol. Reprod. 66, 1749-1754.
Luo, X. R., Ikeda, Y. Y., Schlosser, D. A., Parker, K. L., 1995. Steroidogenic factor-1 is the essential transcript of the mouse FTZ-F1 gene. Mol. Endocrinol. 9, 1233-1239.
Massague, J., 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791.
Massague, J., Wotton, D., 2000. Transcriptional control by the TGF-beta/Smad signaling system. Embo J. 19, 1745-1754.
Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C. E., Shibata, N., Asakawa, S., Shimizu, N., Hori, H., Hamaguchi, S., Sakaizumi, M., 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559-563.
Matsuda, M., Sato, T., Toyazaki, Y., Nagahama, Y., Hamaguchi, S., Sakaizumi, M., 2003. Oryzias curvinotus has DMY, a gene that is required for male development in the medaka, O. latipes. Zool. Sci. 20, 159-161.
Matsuda, M., Shinomiya, A., Kinoshita, M., Suzuki, A., Kobayashi, T., Paul-Prasanth, B., Lau, E. L., Hamaguchi, S., Sakaizumi, M., Nagahama, Y., 2007. DMY gene induces male development in genetically female (XX) medaka fish. Proc. Natl. Acad. Sci. U. S. A. 104, 3865-3870.
McLaren, A., 1983. Studies on mouse germ-cells inside and outside the gonad. J. Exp. Zool. 228, 167-171.
McLaren, A., Southee, D., 1997. Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107-113.
Merchant, H., 1975. Rat gonadal and ovarian organogenesis with and without germ cells - ultrastructural study. Dev. Biol. 44, 1-21.
Mishina, Y., Rey, R., Finegold, M. J., Matzuk, M. M., Josso, N., Cate, R. L., Behringer, R. R., 1996. Genetic analysis of the Mullerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev. 10, 2577-2587.
Miura, T., Miura, C., Konda, Y., Yamauchi, K., 2002. Spermatogenesis-preventing substance in Japanese eel. Development 129, 2689-2697.
Miyachi, K., Fritzler, M. J., Tan, E. M., 1978. Autoantibody to a nuclear antigen in proliferating cells. J. Immunol. 121, 2228-2234.
Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I., Aizawa, S., 1997. Defects of urogenital development in mice lacking Emx2. Development 124, 1653-1664.
Morinaga, C., Saito, D., Nakamura, S., Sasaki, T., Asakawa, S., Shimizu, N., Mitani, H., Furutani-Seiki, M., Tanaka, M., Kondoh, H., 2007. The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc. Natl. Acad. Sci. U. S. A. 104, 9691-9696.
Munsterberg, A., Lovellbadge, R., 1991. Expression of the mouse anti-Mullerian hormone gene suggests a role in both male and female sexual-differentiation. Development 113, 613-624.
Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan, Z. H., Haaf, T., Shimizu, N., Shima, A., Schmid, M., Schartl, M., 2002. A duplicated copy of Dmrt1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl. Acad. Sci. U. S. A. 99, 11778-11783.
Orvis, G. D., Jamin, S. P., Kwan, K. M., Mishina, Y., Kaartinen, V. M., Huang, S., Roberts, A. B., Umans, L., Huylebroeck, D., Zwijsen, A., Wang, D., Martin, J. F., Behringer, R. R., 2008. Functional redundancy of TGF-beta family type receptors and receptor-smads in mediating anti-Mullerian hormone-induced Mullerian duct regression in the mouse. Biol. Reprod. 78, 994-1001.
Page, D. C., Mosher, R., Simpson, E. M., Fisher, E. M. C., Mardon, G., Pollack, J., McGillivray, B., Delachapelle, A., Brown, L. G., 1987. The sex-determining region of the human Y-chromosome encodes a finger protein. Cell 51, 1091-1104.
Parkhurst, S. M., Meneely, P. M., 1994. Sex determination and dosage compensation - lessons from flies and worms. Science 264, 924-932.
Pei, D. S., Sun, Y. H., Chen, S. P., Wang, Y. P., Hu, W., Zhu, Z. Y., 2007. Zebrafish GAPDH can be used as a reference gene for expression analysis in cross-subfamily cloned embryos. Anal. Biochem. 363, 291-293.
Picard, J. Y., Goulut, C., Bourrillon, R., Josso, N., 1986. Biochemical-analysis of bovine testicular anti-Mullerian hormone. FEBS Lett. 195, 73-76.
Prelich, G., Stillman, B., 1988. Coordinated leading and lagging strand synthesis during sv40 dna-replication invitro requires pcna. Cell 53, 117-126.
Ravagnan, L., Roumier, T., Kroemer, G., 2002. Mitochondria, the killer organelles and their weapons. J. Cell. Physiol. 192, 131-137.
Raymond, C. S., Kettlewell, J. R., Hirsch, B., Bardwell, V. J., Zarkower, D., 1999a. Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Dev. Biol. 215, 208-220.
Raymond, C. S., Parker, E. D., Kettlewell, J. R., Brown, L. G., Page, D. C., Kusz, K., Jaruzelska, J., Reinberg, Y., Flejterg, W. L., Bardwell, V. J., Hirsch, B., Zarkower, D., 1999b. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators. Hum. Mol. Genet. 8, 989-996.
Raymond, C. S., Shamu, C. E., Shen, M. M., Seifert, K. J., Hirsch, B., Hodgkin, J., Zarkower, D., 1998. Evidence for evolutionary conservation of sex-determining genes. Nature 391, 691-695.
Rey, R., Al-Attar, L., Louis, F., Jaubert, F., Barbet, P., Nihoul-Fekete, C., Chaussain, J.-L., Josso, N., 1996. Testicular dysgenesis does not affect expression of anti-Muellerian hormone by Sertoli cells in premeiotic seminiferous tubules. American Journal of Pathology 148, 1689-1698.
Rouiller-Fabre, V., Carmona, S., Abou Merhi, R., Cate, R., Habert, R., Vigier, B., 1998. Effect of anti-Mullerian hormone on Sertoli and Leydig cell functions in fetal and immature rats. Endocrinology 139, 1213-1220.
Schafer, A. J., Sex determination and its pathology in man. Advances in Genetics, Vol 33. Academic Press Inc, San Diego, 1995, pp. 275-329.
Schartl, M., 2004. A comparative view on sex determination in medaka. Mech. Dev. 121, 639-645.
Schier, A. F., Shen, M. M., 2000. Nodal signalling in vertebrate development. Nature 403, 385-389.
Shiraishi, E., Yoshinaga, N., Miura, T., Yokoi, H., Wakamatsu, Y., Abe, S. I., Kitano, T., 2008. Mullerian inhibiting substance is required for germ cell proliferation during early gonadal differentiation in medaka (Oryzias latipes). Endocrinology 149, 1813-1819.
Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovellbadge, R., Goodfellow, P. N., 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240-244.
Tanaka, M., Saito, D., Morinaga, C., Kurokawa, H., 2008. Cross talk between germ cells and gonadal somatic cells is critical for sex differentiation of the gonads in the teleost fish, medaka (Oryzias latipes). Dev. Growth Diff. 50, 273-278.
Tsurimoto, T., 1998. PCNA, a multifunctional ring on DNA. Biochim. Biophys. Acta-Gene Struct. Expression 1443, 23-39.
Vandewetering, M., Oosterwegel, M., Vannorren, K., Clevers, H., 1993. Sox-4, an sry-like hmg box protein, is a transcriptional activator in lymphocytes. Embo J. 12, 3847-3854.
Vigier, B., Forest, M. G., Eychenne, B., Bezard, J., Garrigou, O., Robel, P., Josso, N., 1989. Anti-Mullerian hormone produces endocrine sex reversal of fetal ovaries. Proc. Natl. Acad. Sci. U. S. A. 86, 3684-3688.
Visser, J. A., McLuskey, A., Vanbeers, T., Weghuis, D. O., Vankessel, A. G., Grootegoed, J. A., Themmen, A. P. N., 1995. Structure and chromosomal localization of the human anti-Mullerian hormone type-ii receptor gene. Biochem. Biophys. Res. Commun. 215, 1029-1036.
Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., Pasantes, J., Bricarelli, F. D., Keutel, J., Hustert, E., Wolf, U., Tommerup, N., Schempp, W., Scherer, G., 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the sry-related gene sox9. Cell 79, 1111-1120.
Watanabe, K., Clarke, T. R., Lane, A. H., Wang, X. Z., Donahoe, P. K., 2000. Endogenous expression of Mullerian inhibiting substance in early postnatal rat Sertoli cells requires multiple steroidogenic factor-1 and GATA-4-binding sites. Proc. Natl. Acad. Sci. U. S. A. 97, 1624-1629.
Western, P. S., Harry, J. L., Graves, J. A. M., Sinclair, A. H., 1999. Temperature-dependent sex determination in the American alligator: AMH precedes SOX9 expression. Dev. Dyn. 216, 411-419.
Wrobel, K. H., 2003. The genus Acipenser as a model for vertebrate urogenital development: the Mullerian duct. Anat. Embryol. 206, 255-271.
Wu, G. C., Du, J. L., Lee, Y. H., Lee, M. F., Chang, C. F., Current status of genetic and endocrine factors in the sex change of protandrous black porgy, Acanthopagrus schlegeli (Teleostean). Trends in Comparative Endocrinology and Neurobiology. New York Acad Sciences, New York, 2005, pp. 206-214.
Yen, F. P., Lee, Y. H., He, C. L., Huang, J. D., Sun, L. T., Dufour, S., Chang, C. F., 2002. Estradiol-17 beta triggers luteinizing hormone release in the protandrous black porgy (Acanthopagrus schlegeli bleeker) through multiple interactions,with gonadotropin-releasing hormone control. Biol. Reprod. 66, 251-257.
Yoshinaga, N., Shiraishi, E., Yamamoto, T., Iguchi, T., Abe, S., Kitano, T., 2004. Sexually dimorphic expression of a teleost homologue of Mullerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem. Biophys. Res. Commun. 322, 508-513.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊