(3.238.130.97) 您好!臺灣時間:2021/05/14 19:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張宗元
研究生(外文):Tsung-Yuan Chang
論文名稱:新穎四唑鎘化合物的水熱合成開發與生物毒性測試暨牛血清白蛋白之藥物輸送載體─中孔多胞體矽酸泡
論文名稱(外文):Novel Cadmium tetrazole compounds development of hydrothermal synthesis for biological toxicity test & MCFs as a drug carrier for BSA release
指導教授:林秀美林秀美引用關係
指導教授(外文):Hsiu-Mei Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:119
中文關鍵詞:水熱合成藥物載體
外文關鍵詞:hydrothermal synthesisdrug carrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用配位基原位水熱合成 (Hydrothermal in situ ligand syntheses),以氰(CN)與疊氮化鈉(NaN3)進行2+3環化反應,合成具有四唑(tetrazole)立體網絡結構的晶體:[Cd3(mtta)3(N3)3]•2H2O;所得之無色透明晶體經由單晶X-光繞射分析得知為四方晶系(Tetragonal),空間群I 2m,a=22.1918(4)A,b=22.1918(4)A,c=18.5523(7)A,α=β=γ=90°。我們發現五元環配位基甲基四唑(mtta)與六配位之鎘(Cd)原子可形成一類似於富勒烯(fullerene)之結構,因而在網絡巨分子結構上可觀察到類似中空球形胞體互相連接成串之結構,形成明確且尺寸一致的分子孔洞。此外,在光學性質方面,使用226nm雷射可觀察到藍、綠色之激發螢光,325nm雷射則可觀察到綠色激發螢光。四唑官能基在許多領域都具有廣泛的利用性,在藥物化學中,可以非典型同電子排列(nonclassical isosteres)的關係作為羧酸(COOH)官能基的替代物(bioisostere),因此選擇與晶體相似的bioisoteres ─ [(CH3COO)2Cd•2H2O]進行生物毒性測試。

研究中孔洞材料生醫用途的經驗在近幾年之間已經有一個顯著的提升。中孔矽材料具有穩定且一致的中孔結構、高表面積、可調的狹小尺寸分布、明確且可修飾的表面性質、無毒性與好的生物相容性。對藥物遞送系統而言,以中孔洞材料作為載體不像傳統療法中在血漿的藥物濃度中顯示出一個鋸齒型曲線,而在治療週期之間保持治療水平。
不同於二維中孔結構的MCM-41與SBA-15,MCFs是一全新三維(3D)水熱健全超大中孔的材料。依據構造與骨架結構來說,MCFs材料與氣凝膠相似,具有以狹小尺寸分布窗體相互連接的一致球型胞體,其孔徑實質上大於任何其他中孔結構。根據MCFs的結構優勢有潛力作為巨分子之載體。
The purpose of this thesis uses the [2+3] cycloaddition reactions of cyano with NaN3 through “ the in situ ligand hydrothermal syntheses system” afford the [Cd3(mtta)3(N3)3]•2H2O ; mtta=5-Methyl-1H-tetrazole. This compound is a 3D networks crystal which contains the tetrazole functional group. By the X-ray diffraction analysis, the colorless crystal crystallizes in the tetragonal system, space group I 2m, with a=22.1918(4)A,b=22.1918(4)A,c=18.5523(7)A,α=β=γ=90°. We could find that the five-member ring of mtta and six-fold coordination of Cadmium atom can form a fullerene-like structure. Then it can be observed a hollow sphere micelle, which connecting to each other to structure of a string of bean with ordered and identical pore size in the network. Otherwise, in the aspect of the optical characterization, it could be observed blue and green fluorescent emission which is emitted at 226nm and 325nm laser, respectively. The tetrazole functional group has found a wide range of application in many area. In medicinal chemistry, it act as a bioisoteres for a carboxylic acid group in their nonclassical isosteres relation, comparing the biological toxicity test and similar compound with [Cd3(mtta)3(N3)3]•2H2O.

Research on mesoporous materials for biomedical purposes has experienced an outstanding increase during recent years. Mesoporous silica have stable uniform mesoporous structure, high surface area, tunable pore sizes with narrow distributions, well-defined surface properties,
nontoxic nature, and good biocompatibility. For drug-delivery system, the mesoporous materials as a carrier unlike traditional therapies, which show a saw-tooth curve of drug concentration in plasma, it can maintain therapeutic levels during the treatment period.
Unlike MCM-41 and SBA-15, which have two-dimensional mesopore structures, mesocellular silica foams (MCFs) is a new class of three-dimensional(3D) hydrothermally robust materials with ultra-large mesopores. In terms of the textural and framework structure, the MCFs materials resemble aerogels and are composed of uniform spherical cells interconnect by windows with a narrow sizes substantially larger than those of any other mesostructures. According to the advantages of structure about MCFs, it is potential to be macro-molecule carrier.
摘要: I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
化合物一覽表 IX
第一章 緒論 1
1-1 前言 1
1-2 四唑 2
1-3 四唑配位基 2
1-4 四唑的合成 3
1-5 四唑之化學性質 5
1-6 5-取代四唑與羧酸電子等排的取代 6
1-7 鎘對生物之影響 8
1-8 革蘭氏陽性與陰性菌之特性比較 9
1-9 研究動機 12
第二章 實驗部分 13
2-1 水熱合成與配位基原位水熱合成 13
2-1-1 水熱合成(Hydrothermal synthesis) 13
2-1-2 配位基原位水熱合成(Hydrothermal in situ ligand synthesis) 14
2-2 儀器原理 16
2-2-1 單晶X-光繞射 16
2-2-2 晶體結構解析 18
2-2-3 X-光粉末繞射 19
2-2-4 光激發螢光 19
2-3 實驗藥品與材料 21
2-3-1 配位基原位水熱合成 21
2-3-2 抗菌測試 21
2-4 實驗儀器 21
2-4-1 配位基原位水熱合成 22
2-4-2 抗菌測試 22
2-5 製備[Cd3(methyl tetrazole)3(N3)3]•2H2O 23
2-6 抑菌試驗 24
2-6-1 培養基製備 24
2-6-2 菌株的保存 24
2-6-3 菌株活化與菌種製備 24
2-6-4 抑菌性質試驗 25
第三章 結果與討論 26
3-1 [Cd3(mtta)3(N3)3]•2H2O基本骨架剖析 26
3-2 [Cd3(mtta)3(N3)3]•2H2O之三維網絡結構 33
3-2-1 多面體形式 33
3-2-2 球棒型式 34
3-2-3 空間填充型式 34
3-3 [Cd3(mtta)3(N3)3]•2H2O之熱穩定性分析 38
3-3-1 變溫X-ray粉末繞射 38
3-3-2 熱重分析 38
3-4 [Cd3(mtta)3(N3)3]•2H2O之光學特性 40
3-4-1 波長266nm光激發 41
3-4-2 波長325nm光激發 41
3-5 抑菌性質試驗 45
3-7 結論 47
參考文獻 48
牛血清白蛋白之藥物輸送載體 ─中孔多胞體矽酸泡 54

圖目錄
Fig. 1 四唑配位基配位模式圖 3
Fig. 2 傳統四唑合成法 5
Fig. 3 四唑與羧酸結構型式相近示意圖 5
Fig. 4 Losartan 7
Fig. 5 L-692,429 & Tomelukast 8
Fig. 6 革蘭氏陰性及陽性菌之細胞膜比較 11
Fig. 8 [Cd3(mtta)3(N3)3]•2H2O之ortep圖 27
Fig. 9 類似足球(巴克球)之網絡結構 28
Fig. 10 類似足球(巴克球)之網絡結構 28
Fig. 11 [Cd3(mtta)3(N3)3]•2H2O之基本骨架圖 29
Fig. 12 多面體形式之結構解析 35
Fig. 13 球棒形式之結構解析 36
Fig. 14 空間填充形式之結構解析 37
Fig. 15 [Cd3(mtta)3(N3)3]•2H2O之變溫X-ray粉末繞射圖 39
Fig. 16 [Cd3(mtta)3(N3)3]•2H2O之熱重分析(TGA)圖 40
Fig. 17 以波長266nm 不可見光激發激發 43
Fig. 18 mtta以波長266nm 不可見光激發激發 43
Fig. 19 以波長325nmHe-Cd Laser激發 44
Fig. 20 mtta以波長325nmHe-Cd Laser激發 44
Fig. 21 抑菌生長曲線圖 46

表目錄
Table 1 格蘭氏陽性菌與陰性菌之性質比較 10
Table 2 [Cd3(mtta)3(N3)3]•2H2O之晶體資料 30
Table 3 [Cd3(mtta)3(N3)3]•2H2O選擇性Cd-N鍵長表 31
Table 4 [Cd3(mtta)3(N3)3]•2H2O選擇性N-Cd-N鍵角表 32
Table 5 配位示意簡表 33

摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 vii
化合物一覽表 viii
第一章 緒論 1
1-1 前言 1
1-2 藥物載體之結構特性 2
1-2-1 孔洞尺寸 2
1-2-2 表面積 3
1-2-3 孔洞體積 3
1-3 MCFs簡介 4
1-4 BSA簡介 9
1-5 藥物遞送 10
1-6 研究動機 13
第二章 實驗部分 14
2-1 前言 14
2-2 實驗藥品與材料 14
2-3 實驗儀器 14
2-4 儀器原理 15
2-4-1 穿透式電子顯微鏡 15
2-4-2 掃描式電子顯微鏡 18
2-4-3 表面積暨孔洞分析儀 20
2-5 合成方法 25
2-5-1 製備原理 25
2-5-2 合成步驟 25
2-6 牛血清白蛋白吸附與釋放試驗 26
2-6-1 載入方法 26
2-6-2 釋放方法 26
第三章 結果與討論 27
3-1 MCFs性質鑑定與討論 27
3-1-1 X光小角繞射 27
3-1-2 氮氣恆溫吸附脫附分析儀 28
3-1-3 穿透式電子顯微鏡 31
3-1-4 掃描式電子顯微鏡 33
3-2 牛血清白蛋白之輸送測試 34
3-2-1 蛋白質載入試驗 .34
3-2-2 蛋白質釋放試驗 .36
3-3 結論 37
參考資料 38


圖目錄
Fig. 1 次微多胞體泡之結構圖 7
Fig. 2 MCFs合成機制圖 8
Fig. 3 MCFs框架型骨架結構圖 8
Fig. 4 TEM示意圖 17
Fig. 5 SEM示意圖 19
Fig. 6 等溫吸附曲線圖 21
Fig. 7 IUPAC遲滯曲線圖 23
Fig. 8 不同孔洞形狀吸脫附行為示意圖 24
Fig. 9 MCFs X光小角繞射 27
Fig. 10 氮氣恆溫吸附脫附圖 29
Fig. 11 BJH吸附狀態孔洞尺寸分布 30
Fig. 12 BJH脫附狀態孔洞尺寸分布 30
Fig. 13 較小倍率TEM圖 31
Fig. 14 較大倍率TEM圖 32
Fig. 15 MCFs之SEM圖 33
Fig. 16 BSA載入量比較圖 35
Fig. 17 BSA釋放圖 36

表目錄
Table 1 中孔洞材料MCFs與SBA-15、MCM-41之比較 7
Table 2 總覽與比較 29
[1] M. Fujita, M. Tominaga, A. Hori and B. Therrien, Accounts of Chemical Research 2005, 38, 369 E. Menozzi, M. Busi, C. Massera, F. Ugozzoli, D. Zuccaccia, A. Macchioni and E. Dalcanale, Journal of Organic Chemistry 2006, 71, 2617.
[2] O. D. Fox, M. G. B. Drew and P. D. Beer, Angewandte Chemie-International Edition 2000, 39, 136.
[3] G. Givaja, A. J. Blake, C. Wilson, M. Schroder and J. B. Love, Chemical Communications 2005, 4423.
[4] S. Furukawa, T. Okubo, S. Masaoka, D. Tanaka, H. C. Chang and S. Kitagawa, Angewandte Chemie-International Edition 2005, 44, 2700.
[5] M. Du, X. J. Jiang and X. J. Zhao, Inorganic Chemistry 2006, 45, 3998.
[6] R. H. Wang, L. J. Xu, J. X. Ji, Q. Shi, Y. M. Li, Z. Y. Zhou, M. C. Hong and A. S. C. Chan, European Journal of Inorganic Chemistry 2005, 751.
[7] A. R. Katritzky, S. Singh, K. Kirichenko, M. Smiglak, J. D. Holbrey, W. M. Reichert, S. K. Spear and R. D. Rogers, Chemistry-a European Journal 2006, 12, 4630 A. Y. Robin and K. M. Fromm, Coordination Chemistry Reviews 2006, 250, 2127 J. P. Zhang and X. M. Chen, Chemical Communications 2006, 1689.
[8] A. Rodriguez, R. Kivekas and E. Colacio, Chemical Communications 2005, 5228 A. Rodriguez-Dieguez and E. Colacio, Chemical Communications 2006, 4140.
[9] R. G. Xiong, X. Xue, H. Zhao, X. Z. You, B. F. Abrahams and Z. L. Xue, Angewandte Chemie-International Edition 2002, 41, 3800 X. A. Xue, X. S. Wang, L. Z. Wang, R. G. Xiong, B. F. Abrahams, X. Z. You, Z. L. Xue and C. M. Che, Inorganic Chemistry 2002, 41, 6544 Z. R. Qu, H. Zhao, X. S. Wang, Y. H. Li, Y. M. Song, Y. J. Liu, Q. O. Ye, R. G. Xiong, B. F. Abrahams, Z. L. Xue and X. Z. You, Inorganic Chemistry 2003, 42, 7710 L. Z. Wang, Z. R. Qu, H. Zhao, X. S. Wang, R. G. Xiong and Z. L. Xue, Inorganic Chemistry 2003, 42, 3969 X. S. Wang, Y. Z. Tang and R. G. Xiong, Chinese Journal of Inorganic Chemistry 2005, 21, 1025 Q. Ye, Y. H. Li, Y. M. Song, X. F. Huang, R. G. Xiong and Z. L. Xue, Inorganic Chemistry 2005, 44, 3618.
[10] X. S. Wang, Y. Z. Tang, X. F. Huang, Z. R. Qu, C. M. Che, P. W. H. Chan and R. G. Xiong, Inorganic Chemistry 2005, 44, 5278 Q. Ye, Y. M. Song, G. X. Wang, K. Chen, D. W. Fu, P. W. H. Chan, J. S. Zhu, S. D. Huang and R. G. Xiong, Journal of the American Chemical Society 2006, 128, 6554.
[11] Z. P. Demko and K. B. Sharpless, Journal of Organic Chemistry 2001, 66, 7945 Z. P. Demko and K. B. Sharpless, Organic Letters 2001, 3, 4091 Z. P. Demko and K. B. Sharpless, Angewandte Chemie-International Edition 2002, 41, 2110.
[12] T. Wu, B. H. Yi and D. Li, Inorganic Chemistry 2005, 44, 4130 T. Wu, M. Chen and D. Li, European Journal of Inorganic Chemistry 2006, 2132 T. Wu, R. Zhou and D. Li, Inorganic Chemistry Communications 2006, 9, 341.
[13] X. M. Zhang, Y. F. Zhao, H. S. Wu, S. R. Battenb and S. W. Ng, Dalton Transactions 2006, 3170 J. J. Hou, Z. M. Hao and X. M. Zhang, Inorganica Chimica Acta 2007, 360, 14.
[14] J. V. Duncia, M. E. Pierce and J. B. Santella, Journal of Organic Chemistry 1991, 56, 2395 S. J. Wittenberger and B. G. Donner, Journal of Organic Chemistry 1993, 58, 4139 S. J. Wittenberger, Organic Preparations and Procedures International 1994, 26, 499 D. P. Curran and S. Hadida, Tetrahedron 1999, 55, 8997.
[15] V. E. Wiberg and H. Z. Michaud, Zeitschrift Fur Naturforschung Section B-A Journal of Chemical Sciences 1954, 45, 497 Z. Grzonka, M. A. Staszak and L. B, Roczniki Chemii 1971, 45, 967 B. E. Huff and M. A. Staszak, Tetrahedron Letters 1993, 34, 8011 A. Kumar, R. Narayanan and H. Shechter, Journal of Organic Chemistry 1996, 61, 4462.
[16] H. Singh, A. S. Chawla, V. K. Kapoor, D. Paul and R. K. Malhotra, Progress in Medicinal Chemistry 1980, 17, 151 C. Janiak, Journal of the Chemical Society-Chemical Communications 1994, 545 C. Janiak, T. G. Scharmann, W. Gunther, F. Girgsdies, H. Hemling, W. Hinrichs and D. Lentz, Chemistry-a European Journal 1995, 1, 637 M. Hill, M. F. Mahon and K. C. Molloy, Journal of the Chemical Society-Dalton Transactions 1996, 1857 S. Bhandari, M. F. Mahon, J. G. McGinley, K. C. Molloy and C. E. E. Roper, Journal of the Chemical Society-Dalton Transactions 1998, 3425 X. G. Zhou, Z. E. Huang, R. F. Cai, L. X. Zhang, X. F. Hou, X. J. Feng and X. Y. Huang, Journal of Organometallic Chemistry 1998, 563, 101 L. Carlucci, G. Ciani and D. M. Proserpio, Angewandte Chemie-International Edition 1999, 38, 3488 V. A. Ostrovskii, M. S. Pevzner, T. P. Kofmna, M. B. Shcherbinin and I. V. Tselinskii, Targets in Heterocyclic Systems 1999, 3, 467 S. Bhandari, M. F. Mahon, K. C. Molloy, J. S. Palmer and S. F. Sayers, Journal of the Chemical Society-Dalton Transactions 2000, 7, 1053.
[17] L. Z. Wang, X. S. Wang, Y. H. Li, Z. P. Bai, R. G. Xiong, M. Xiong and G. W. Li, Chinese Journal of Inorganic Chemistry 2002, 18, 1191 X. Xue, B. F. Abrahams, R. G. Xiong and X. Z. You, Australian Journal of Chemistry 2002, 55, 495 H. Zhao, Q. Ye, Q. Wu, Y. M. Song, Y. J. Liu and R. G. Xiong, Zeitschrift Fur Anorganische Und Allgemeine Chemie 2004, 630, 1367 X. F. Huang, Y. M. Song, Q. Wu, Q. Ye, X. B. Chen, R. G. Xiong and X. Z. You, Inorganic Chemistry Communications 2005, 8, 58 X. S. Wang, X. F. Huang and R. G. Xiong, Chinese Journal of Inorganic Chemistry 2005, 21, 1020 X. S. Wang, Y. M. Song and R. G. Xiong, Chinese Journal of Inorganic Chemistry 2005, 21, 1030.
[18] W. G. Finnegan, R. A. Henry and R. Lofquist, Journal of the American Chemical Society 1958, 80, 3908 K. L. Kees, R. S. Cheeseman, D. H. Prozialeck and K. E. Steiner, Journal of medicinal chemistry 1989, 32, 11 W. H. W. Lunn, D. D. Schoepp, D. O. Calligaro, R. T. Vasileff, L. J. Heinz, C. R. Salhoff and P. J. O'Malley, Journal of medicinal chemistry 1992, 35, 4608.
[19] Z. P. Demko and K. B. Sharpless, Organic Letters 2002, 4, 2525 Z. P. Demko and K. B. Sharpless, Angewandte Chemie-International Edition 2002, 41, 2113 F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless, Journal of the American Chemical Society 2002, 124, 12210 F. Himo, Z. P. Demko, L. Noodleman and K. B. Sharpless, Journal of the American Chemical Society 2003, 125, 9983.
[20] R. M. Herbst and K. R. Wilson, Journal of Organic Chemistry 1957, 22, 1142.
[21] J. Kaczmarek, Ergonomics 1979, 22, 681 V. A. Ostrovskii and A. O. Koren, Heterocycles 2000, 53, 1421.
[22] R. N. Butler, In Comprehensive Heterocyclic Chemistry II, Oxford, Pergamon, 1996, p. 621.
[23] C. Hansch and L. Leo, Exploring QSAR. Fundamentals and Applications in Chemistry and Biology, American Chemical Society, Washington. DC, 1995, p. Chap.13.
[24] G. I. Koldobskii and V. A. Ostrovskii, Uspekhi Khimii 1994, 63, 847.
[25] J. L. Kraus, Pharmacological Research Communications 1983, 15,
183.
[26] R. J. Herr, Bioorganic & Medicinal Chemistry 2002, 10, 3379.
[27] D. V. Fedyuk, I. I. Maletina and L. M. Yagupol'skii, Ukrainskii Khimicheskii Zhurnal 1997, 63, 47.
[28] R. R. Wexler, W. J. Greenlee, J. D. Irvin, M. R. Goldberg, K. Prendergast, R. D. Smith and P. Timmermans, Journal of medicinal chemistry 1996, 39, 625.
[29] B. Le Bourdonnec, E. Meulon, S. Yous, J. F. Goossens, R. Houssin and J. P. Henichart, Journal of medicinal chemistry 2000, 43, 2685.
[30] M. Stoeppler, Cadmium, VCH, New York, 1991, p. 803.
[31] I. Malave and D. T. Deruffino, Toxicology and Applied Pharmacology 1984, 74, 46 P. L. Goering, M. P. Waalkes and C. D. Klaassen, Toxicology of cadmium., 1995, p. 189.
[32] J. M. Rogers, The developmental toxicology of cadmium and arsenic, with notes on lead., CRC Lewis, 1996, p. 1027.
[33] M. P. Waalkes and R. R. Misra, Cadmium carcinogenicity and genotoxicity., CRC Lewis, 1996, p. 231.
[34] B. R. Blakley, Canadian Journal of Comparative Medicine-Revue Canadienne De Medecine Comparee 1985, 49, 104.
[35] E. Marth, S. Jelovcan, B. Kleinhappl, A. Gutschi and S. Barth, International Journal of Occupational and Environmental Health 2001, 14, 375.
[36] J. H. Exon, E. H. South and K. Hendrix, Effects of metals on the humoral imune resposnse Lewis, CRC, 1996, p. 798.
[37] E. Marth, S. Barth and S. Jelavcan, Central European Public Health 2000, 8, 40.
[38] J. Descostes, IARC Sci. Publ. 1992, 118, 385 J. T. Zelikoff, D. Bowser, K. S. Squibb and K. Frenkel, Journal of Toxicology and Environmental Health 1995, 45, 235.
[39] A. Lafuente, P. Cano and A. I. Esquifino, Biometals 2003, 16, 243.
[40] B. Samuel, Medical Microbiology: The University of Texas Medical Brand of Galvestion, 1996 .
[41] X. M. Zhang, Coordination Chemistry Reviews 2005, 249, 1201.
[42] X. M. Zhang, M. L. Tong, M. L. Gong, H. K. Lee, L. Luo, K. F. Li, Y. X. Tong and X. M. Chen, Chemistry (Weinheim an der Bergstrasse, Germany) 2002, 8, 3187 S. L. Zheng, J. P. Zhang, W. T. Wong and X. M. Chen, Journal of the American Chemical Society 2003, 125, 6882.
[43] A. J. Blake, N. R. Champness, S. S. M. Chung, W. S. Li and M. Schroder, Chemical Communications 1997, 1675 X. M. Zhang, J. J. Hou and H. S. Wu, Dalton Trans 2004, 3437.


[1] J. V. Walker, M. Morey, H. Carlsson, A. Davidson, G. D. Stucky and A. Butler, Journal of the American Chemical Society 1997, 119, 6921 L. Mercier and T. J. Pinnavaia, Advanced Materials 1997, 9, 500 X. Feng, G. E. Fryxell, L. Q. Wang, A. Y. Kim, J. Liu and K. M. Kemner, Science 1997, 276, 923 W. Z. Zhang, J. L. Wang, P. T. Tanev and T. J. Pinnavaia, Chemical Communications 1996, 979 T. Maschmeyer, F. Rey, G. Sankar and J. M. Thomas, Nature 1995, 378, 159 S. Gontier and A. Tuel, Zeolites 1995, 15, 601 T. Blasco, A. Corma, M. T. Navarro and J. P. Pariente, Journal of Catalysis 1995, 156, 65 M. E. Davis, Chem. Ind 1992, 4, 137 M. T. W. Hearn, HPLC of Proteins, Peptides and Polynucleotides, VCH, New York, 1991, p R. H. Perry and D. Green, Perry's Chemical Engineers' Handbook, McGraw-Hill, New York, 1984, p.
[2] J. Y. Ying, C. P. Mehnert and M. S. Wong, Angewandte Chemie-International Edition 1999, 38, 56 U. Ciesla and F. Schuth, Microporous and Mesoporous Materials 1999, 27, 131.
[3] D. Y. Zhao, P. D. Yang, B. F. Chmelka and G. D. Stucky, Chemistry of Materials 1999, 11, 1174 R. Ulrich, D. Koletzki, S. Lachmann, A. Lundkvist, A. Zankl, A. Kazaks, A. Kurth, H. R. Gelderblom, G. Borisova, H. Meisel and D. H. Kruger, Journal of Biotechnology 1999, 73, 141 P. Schmidt-Winkel, P. D. Yang, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Advanced Materials 1999, 11, 303 Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature 1999, 398, 223 D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka and G. D. Stucky, Advanced Materials 1998, 10, 1380 P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Nature 1998, 396, 152 P. D. Yang, D. Y. Zhao, B. F. Chmelka and G. D. Stucky, Chemistry of Materials 1998, 10, 2033 C. G. Goltner, S. Henke, M. C. Weissenberger and M. Antonietti, Angewandte Chemie-International Edition 1998, 37, 613 C. G. Goltner, B. Berton, E. Kramer and M. Antonietti, Chemical Communications 1998, 2287 M. Templin, A. Franck, A. DuChesne, H. Leist, Y. M. Zhang, R. Ulrich, V. Schadler and U. Wiesner, Science 1997, 278, 1795 S. A. Bagshaw, E. Prouzet and T. J. Pinnavaia, Science 1995, 269, 1242.
[4] D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and G. D. Stucky, Journal of the American Chemical Society 1998, 120, 6024 D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science 1998, 279, 548.
[5] E. Kramer, S. Forster, C. Goltner and M. Antonietti, Langmuir 1998, 14, 2027.
[6] E. Prouzet and T. J. Pinnavaia, Angewandte Chemie-International Edition in English 1997, 36, 516 Q. S. Huo, R. Leon, P. M. Petroff and G. D. Stucky, Science 1995, 268, 1324.
[7] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, Journal of the American Chemical Society 1992, 114, 10834.
[8] P. Schmidt-Winkel, W. W. Lukens, D. Y. Zhao, P. D. Yang, B. F. Chmelka and G. D. Stucky, Journal of the American Chemical Society 1999, 121, 254.
[9] S. W. Song, K. Hidajat and S. Kawi, Langmuir 2005, 21, 9568.
[10] B. Munoz, A. Ramila, J. Perez-Pariente, I. Diaz and M. Vallet-Regi, Chemistry of Materials 2003, 15, 500.
[11] C. Tourne-Peteilh, D. A. Lerner, C. Charnay, L. Nicole, S. Begu and J. M. Devoisselle, Chemphyschem 2003, 4, 281.
[12] D. R. Radu, C. Y. Lai, K. Jeftinija, E. W. Rowe, S. Jeftinija and V. S. Y. Lin, Journal of the American Chemical Society 2004, 126, 13216.
[13] C. Barbe, J. Bartlett, L. G. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush and G. Calleja, Advanced Materials 2004, 16, 1959.
[14] C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija and V. S. Y. Lin, Journal of the American Chemical Society 2003, 125, 4451.
[15] P. Horcajada, A. Ramila, J. Perez-Pariente and M. Vallet-Regi, Microporous and Mesoporous Materials 2004, 68, 105.
[16] A. L. Doadrio, E. M. B. Sousa, J. C. Doadrio, J. P. Pariente, I. Izquierdo-Barba and M. Vallet-Regi, Journal of Controlled Release 2004, 97, 125 J. Andersson, J. Rosenholm, S. Areva and M. Linden, Chemistry of Materials 2004, 16, 4160 A. Ramila, B. Munoz, J. Perez-Pariente and M. Vallet-Regi, Journal of Sol-Gel Science and Technology 2003, 26, 1199 M. Vallet-Regi, A. Ramila, R. P. del Real and J. Perez-Pariente, Chemistry of Materials 2001, 13, 308.
[17] C. Tourne-Peteilh, D. Brunel, S. Begu, B. Chiche, F. Fajula, D. A. Lerner and J. M. Devoisselle, New Journal of Chemistry 2003, 27, 1415.
[18] J. Fan, C. Yu, F. Gao, J. Lei, B. Tian, L. Wang, Q. Luo, B. Tu, W. Zhou and D. Zhao, Angewandte Chemie (International ed 2003, 42, 3146.
[19] T. Azais, C. Tourne-Peteilh, F. Aussenac, N. Baccile, C. Coelho, J. M. Devoisselle and F. Babonneau, Chemistry of Materials 2006, 18, 6382.
[20] Y. M. Liu, W. L. Feng, T. C. Li, H. Y. He, W. L. Dai, W. Huang, Y. Cao and K. N. Fan, Journal of Catalysis 2006, 239, 125.
[21] P. Schmidt-Winkel, W. W. Lukens, P. D. Yang, D. I. Margolese, J. S. Lettow, J. Y. Ying and G. D. Stucky, Chemistry of Materials 2000, 12, 686.
[22] D. T. On and S. Kaliaguine, Journal of the American Chemical Society 2003, 125, 618.
[23] J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. D. Yang, D. Y. Zhao, G. D. Stucky and J. Y. Ying, Langmuir 2000, 16, 8291.
[24] Y. J. Han, J. T. Watson, G. D. Stucky and A. Butler, Journal of Molecular Catalysis B-Enzymatic 2002, 17, 1.
[25] P. Kustrowski, L. Chmielarz, R. Dziembaj, P. Cool and E. F. Vansant, Journal of Physical Chemistry B 2005, 109, 11552 A. Ungureanu, D. T. On, E. Dumitriu and S. Kaliaguine, Applied Catalysis a-General 2003, 254, 203 D. Trong-On, A. Ungureanu and S. Kaliaguine, Physical Chemistry Chemical Physics 2003, 5, 3534.
[26] A. Kabalnov, B. Lindman, U. Olsson, L. Piculell, K. Thuresson and H. Wennerstrom, Colloid and Polymer Science 1996, 274, 297 D. Langevin, Accounts of Chemical Research 1988, 21, 255.
[27] A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. X. Cui, I. Khayrullin, S. O. Dantas, I. Marti and V. G. Ralchenko, Science 1998, 282, 897.
[28] N. Husing and U. Schubert, Angewandte Chemie-International Edition 1998, 37, 23 M. Schneider and A. Baiker, Catalysis Reviews-Science and Engineering 1995, 37, 515.
[29] S. Schacht, Q. Huo, I. G. VoigtMartin, G. D. Stucky and F. Schuth, Science 1996, 273, 768.
[30] Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chemistry of Materials 1997, 9, 14.
[31] A. Imhof and D. J. Pine, Advanced Materials 1998, 10, 697 A. Imhof and D. J. Pine, Nature 1997, 389, 948.
[32] B. T. Holland, C. F. Blanford and A. Stein, Science 1998, 281, 538 M. Antonietti, B. Berton, C. Goltner and H. P. Hentze, Advanced Materials 1998, 10, 154 O. D. Velev, T. A. Jede, R. F. Lobo and A. M. Lenhoff, Nature 1997, 389, 447.
[33] D. C. Carter and J. X. Ho in Structure of Serum-Albumin, Vol. 45 1994, pp. 153.
[34] A. Martini and C. Ciocca, Expert Opinion on Therapeutic Patents 2003, 13, 1801 C. Oussoren and G. Storm, Advanced Drug Delivery Reviews 2001, 50, 143 D. L. Emerson, Pharm Sci Technolo Today 2000, 3, 205.
[35] K. Kataoka, A. Harada and Y. Nagasaki, Advanced Drug Delivery Reviews 2001, 47, 113.
[36] A. D. Abu-Rmaileh R, D'Emanuele A, DRUG DELIVERY systems & sciences 2003, 3.
[37] K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni and W. E. Rudzinski, Journal of Controlled Release 2001, 70, 1.
[38] Y. Wei, J. G. Xu, Q. W. Feng, H. Dong and M. D. Lin, Materials Letters 2000, 44, 6.
[39] K. S. Finnie, J. R. Bartlett and J. L. Woolfrey, Journal of Materials Chemistry 2000, 10, 1099.
[40] S. Boninsegna, P. Bosetti, G. Carturan, G. Dellagiacoma, R. Dal Monte and M. Rossi, J Biotechnol 2003, 100, 277.
[41] J. Brouwers, Pharmacy World & Science 1996, 18, 153.
[42] D. D. Breimer, Advanced Drug Delivery Reviews 1998, 33, 265.
[43] S. W. Song, K. Hidajat and S. Kawi, Langmuir 2005, 21, 9568.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top