Benjamin, S. and Pandey A. (1998) Candida rugosa lipase: Molecular biology and verstionility in biotechnology. Yeast 14, 1069-1087.
Brocca, S., Persson, M., Wehtje, E., Adlercreutz, P., Alberghina, L. and Lotti, M. (2000) Mutants provide evidence of the importance of glycosylic chains in the activation of lipase 1 from Candida rugosa. Protein Sci., 9, 985-990.
Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., and Lotti, M. (2003). Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci 12, 2312-2319.
Chapus, C. and Semeriva, M. (1976) Mechanism of pancreatic lipase action 2. Catalytic properties of modified lipase. Biochemisity 15, 4988-4991.
Derewenda, Z. S. and Derewenda, U. (1991) Relationships motif in triacylglyceride lipase and esterases. Biochem. Cell Biol. 69, 842-851.
Dominguez de Maria, P., Sanchez-Montero, J. M., Sinisterra, J. V., & Alcantara, A. R. (2006). Understanding candida rugosa lipases: An overview. Biotechnol Adv, 24 , 180-196.
Dziezak, J. D. (1986) Enzyme modification of diary products. J. Food Technol. 4, 114-120.
Gills, A. (1988) Research discovers new roles for lipases. JAOCS. 65, 840-851.
Grochulski, P., Bouthillier, F., Kazlauskas, R. J., Serreqi, A. N., Schrag, J. D., Ziomek, E., and Cygler, M. (1994). Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 33, 3494-3500.
Hide, W. A., Chan, L. and Li, W. H. (1992) Structure and evolution of the lipase superfamily. J. Lipid Res. 33, 167-178.
Jaeger, K. E., Dijkstra, B. W., and Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53, 315-351.
Jurgen, P., Fischer, M. and Schmid, R. D. (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem. Phy. Lipids. 93: 67-80.
Kawaguchi, Y., Honda, H., Taniguchi-Morimura, J., and Iwasaki, S. (1989). The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature 341, 164-166.
Lotti, M., Grandori, R., Fusetti, F., Longhi, S., Brocca, S., Tramontano, A., and Alberghina, L. (1993). Cloning and analysis of Candida cylindracea lipase sequences. Gene 124, 45-55.
Lotti, M., Tramontano, A., Longhi, S., Fusetti, F., Brocca, S., Pizzi, E., and Alberghina, L. (1994). Variability within the Candida rugosa lipases family. Protein Eng 7, 531-535.
Muralidhar, R. V., Chirumamilla, R. R., Marchant, R., Ramachandran, V. N., Ward, O. P. and Nigam, P. (2002) Understanding lipase stereoselectivity. World J. of Microbio. and Biotech. 18, 81-97.
Pleiss, J., Fischer, M., and Schmid, R. D. (1998). Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipids 93, 67-80.
Schrag, J. D., Li, Y., Wu, S. and Cygler, M. (1991) Ser-His-Glu Traid forms the catalytic site of lipase from Geotrichum candidum. Nature 351,761-764
Wooley, P., Petersen, S. B. (1994) Lipase: Their Structure, Biochemistry and Application, Cambridge University Press, Cambridge, UK.
Wooley, P., Petersen, S. B. (1994) Lipase: Their Structure, Biochemistry and Application, Cambridge University Press, Cambridge, UK.
Yokogawa, T., Suzuki, T., Ueda, T., Mori, M., Ohama, T., Kuchino, Y., Yoshinari, S., Motoki, I., Nishikawa, K., Osawa, S., and et al. (1992). Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc Natl Acad Sci U S A 89, 7408-7411.
郭富雯。2001。龜山島海底熱液活動初步調查。國立中山大學海洋地質及化學研究所碩士論文。李世強。2007。龜山島海底熱泉分離之ㄧ株厭氧嗜高溫醣類分解菌之型態與特性分析。國立台灣海洋大學海洋生物研究所碩士論文。Bronnenmeier, K., K. Kundt, K. Riedel, W. H. Schwarz, and W. L. Stardenbauer. 1997. Structure of the Clostridium stercorarium gene celY encoding the exo-1,4-β-glucanase Avicelase II. Microbiology 143:891-898.
Cosgrove, D. J. 1998. cell wall: Structure, Biogenesis, and Expansion. In: Plant Physiology. pp.409-443., Taiz L., Zeiger E., Eds., Sinauer Associates,Inc,Sunderland.
Ghose, T. K. 1987.Measurement of cellulose activities. Pure and Appl. Chem.59:257-268.
Haki, G. D., and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 17-34.
Halldorsdottir, S. , E. T. Throlfsdottir, R. Spilliaert, M. Tohansson, S. H. Thorbjarnardottir, H. Palsdottir, G. O. Hreggvidsson, J. K. Kristjansson, O. Holst. and G.Eggertsson. 1998. Cloning,sequencing and overexpression of a Rhodothermus marinus gene encoding a thermostable cellulose of plycosyl hydrolase family 12. Appl.Microbiol.Biotechnol.49:277-284
Hesselman, K., Aman, P. 1986. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chicken fed on barley of lew or hight viscosity. Anim.Feed.Sci.Technol.15:85-93.
Vieille, C., and G. J. Zeikus.2001.Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65:1-43
Virendra, S. B. and Mishra, S. 1989.Regulatory aspects of cellulose biosynthesis and secretion. Crit.Rev.Biotech.9:61-103.