(3.238.130.97) 您好!臺灣時間:2021/05/14 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張詠斌
研究生(外文):Yuan-Pin Chang
論文名稱:沖繩海槽最近十萬年之古海洋記錄研究
論文名稱(外文):The Last 100,000 Years Paleoceanographic Records in the Okinawa Trough
指導教授:陳明德陳明德引用關係
指導教授(外文):Min-Te Chen
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:應用地球科學研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:267
中文關鍵詞:東海沖繩海槽黑潮古海洋學
外文關鍵詞:East China SeaOkinawa TroughKuroshioPaleoceanography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:422
  • 評分評分:
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
利用取自沖繩海槽中部的深海沈積物岩心MD012404,本論文進行了東海晚第四紀古海洋研究。主要研究成果包含有四個方面:1.建立高解析度與高精準度的年代模式;2.有孔蟲及矽藻化石群集鑑定與豐度分析;3.東海軌道力時間尺度之古海洋學探討;4.東亞邊緣海千年至百年時間尺度之海洋與氣候變化記錄研究。
由本研究利用碳十四定年與穩定氧同位素地層所建立之年代模式顯示,沈積物岩心MD012404可以記錄過去十萬年來東海地區的氣候與環境變化訊息,並可涵蓋最近一次間冰期-冰期的氣候循環。岩心MD012404之平均沈積速率約為每千年50公分,經與本區其他已發表的岩心記錄比較,本研究所建立的古海洋記錄在涵蓋的時間範圍與分辨率方面皆為東海地區目前已知的最佳記錄,不僅可幫助我們了解東亞氣候在軌道力時間尺度上面的變化,甚至可以達到千年以至百年時間尺度的解析度,因而可以與南、北兩極的冰心記錄做良好對比,增加我們對主導全球氣候循環改變營力的了解。
影響浮游生物化石群集的環境因子包括海水溫度、鹽度、營養鹽、日照及洋流等,因此重建過去化石群集的豐度變化資料,可以提供我們關於東海地區環境因子改變的資訊。本研究主要建立了包含浮游有孔蟲及矽藻的化石群集豐度變化資料,重建了過去十萬年本研究區域包括海水表面溫度、鹽度、營養鹽及洋流變化的記錄。由海表溫度記錄來看,顯示東海在幾個北半球快速變冷事件中,都有相對應的1至3℃變冷趨勢,然而與北極冰心與東亞陸地石筍古氣候記錄相較之下,東海的海表溫度變冷事件持續的時間較短,且其發生的時間均呈現約為500到1000年的領先趨勢,與南極的冰心所記錄的氣候轉冷事件較為吻合,顯示東海的氣候變化可能同時受到南、北半球高緯的氣候改變影響,而這高低緯氣候連繫的徒徑推測可能是藉由東亞季風與太平洋表面洋流–黑潮的熱量與水氣傳輸有關。
由本論文鑑定出的浮游有孔蟲與矽藻化石群豐度變化記錄顯示,沖繩海槽在氧同位素第五階之前應為一半封閉的海盆,南邊因當時存在著琉球島弧的海欄而與菲律賓海隔開,因此底部水團呈現較不流通的缺氧狀態,此缺氧狀態的訊息便反映在底棲有孔蟲殼體的碳同位素上。氧同位素第五階之氣候與海水面高度與全新世相似,但沖繩海槽氧同位素第五階的底棲有孔蟲殼體碳同位素比值比全新世較輕,可達1?左右。此時黑潮應是受限於海欄地形而未完全進入沖繩海槽,導致矽藻化石中的近岸種與淺海種比例高於大洋種,且黑潮指標種完全消失。這種半封閉情況持續到距今約六萬到五萬年前,由於海槽南邊與那國海盆的沉降,促使了底層水的流通與表層黑潮的進入沖繩海槽。而於末次冰盛期時,由於全球海水面下降了約120公尺,因此再次限制了黑潮進入沖繩海槽,於此時,東海的浮游生物主要以較適應低溫的矽藻為主,浮游有孔蟲的數量相對減少,直到氣候回暖,海水面開始上升,黑潮於距今1萬6千年前重新開始影響沖繩海槽的水文環境直到今日。
經由分析沈積物中的碳氮比值與有機物的碳穩定同位素比值顯示,岩心MD012404沈積物中的有機碳成份主要為海洋性來源,因此可以當作東海表面生物生產力變化的代用指標。經與陸地上的洞穴石筍記錄相對比顯示,當東亞氣候相對較潮溼溫暖,夏季季風較盛行時,東海的生物生產力較高,而當東亞氣候變得乾冷,冬季季風較盛行時,則東海生物生產力也相對偏低,並呈現明顯的歲差週期變化,且可以與北半球高緯地區冰心記錄中的千年時間尺度氣候變化事件做良好對比,顯示當太陽入射量增強或北半球氣候快速回暖時,逐漸增強的夏季季風會帶來較多的降雨在東亞大陸上,大量的淡水輸入東海促使了較多的營養鹽輸入或藉由洋流湧昇到東海陸棚上,因而促使了生物生產力的增加,反之,當夏季季風減弱時,乾燥的氣候減少了營養鹽的輸出,並伴隨陸棚湧昇流的減弱,因而降低了東海的生物生產力。
Marine sediment core MD012404 retrieved from the central Okinawa Trough (OT) was used in this thesis research for studying late Quaternary paleoceanography in the East China Sea (ECS). This research has four objectives: 1. establishing high-resolution and high-precision age model that covers the last interglacial to glacial cycle; 2. reconstructing hydrographic records by planktic foraminifer and diatom species abundance analyses; 3. understanding forcing mechanisms that drive orbital-scale paleoceanographic variations in the ECS; 4. investigating millennial- to centennial-scale variability of the East Asian monsoon and ECS productivity by comparing the marine records with stalagmites on land and ice cores from polar regions.
The age model of core MD012404 is constructed by 19 AMS 14C dating and 7 Marine Isotope Stage (MIS) events correlated to the SPECMAP time scale. It indicates that the core is composed of sediments accumulated over the last 100,000 years, with a fairly constant sedimentation rate of ~50 cm/kyr. The resolution is necessary to the paleoclimatic analyses of orbital, and millennial to centennial time-scales on the basis of correlating to stalagmite and ice core records, that has not been achieved in any previous paleoceanographic study in the ECS.
Sea surface temperature (SST), salinity (SSS), nutrient content, current pattern, and the variation in incoming solar insolation control the productivity and distribution of marine planktons. Planktic foraminifer fauna and diatom flora assemblages preserved in core MD012404 thus provide information about how these environmental factors have varied in the ECS. Planktic foraminifer fauna SST estimation indicates that the surface ECS has experienced several abrupt cooling events by 1-3 oC in the past 100,000 years. These cooling events are analogous to the Heinrich events that have been reconstructed based on North Atlantic marine records, and are coincident to abrupt dry episodes indicated by stalagmite oxygen isotope records (Hulu and Sanbo) in East Asia. These cold and dry events expressed respectively in marine and terrestrial settings suggest that strengthened East Asian winter monsoon is a probable mechanism that drives the climate change. Moreover, the abrupt cold events in the ECS appear to be much shorter-lived in comparison with similar events observed in ice core records, but show ~500-1000 years lead, the same phasing as seen in Antarctic temperature records. This phasing implies effective influences from the South Hemisphere to the ECS by propagating the climatic signatures from the south through heat and moisture transport via East Asian summer monsoon and the Kuroshio.
The more frequent occurrence of tychopelagic species and the lack of marine species of diatoms before 50-60 ka in core MD012404 suggest a more semi-enclosed environment in the OT. The microfossil evidence is consistent with that indicated by carbon stable isotope in benthic foraminifers from the same core and is supported by tectonic evidence from the southern part of the OT. The semi-enclosed environment in the OT has not been changed until the Yonaguni Depression was formed at the southern part of the OT in ~50-60 ka. The microfossil data generated in this core suggest that the Kuroshio might have been blocked out of the OT before 50-60 ka. The microfossil evidence also indicates that during the LGM, a lowering of ~120 m of global sea level might have also limited the intrusion of the Kuroshio water into the ECS. The warm and more saline Kuroshio water appeared to re-enter into the OT at ~16 ka when the global sea level raised gradually in response to the melted ice sheets in high latitudes of the North Hemisphere.
Analyses of carbon stable isotopes of organic matter and C/N ratios of biogenic sediments indicate that the organic matter and biogenic sediment contents in core MD012404 are mainly marine sources. The precession and millennial to centennial-scale variations in total organic carbon (TOC) in core MD012404 correlate well with the summer monsoon precipitation changes recorded in Hulu and Sanbao stalagmites from Eastern China. The land-sea linkage of strengthened summer monsoon on land and increased marine productivity in the ECS suggests a scenario in that the increased precipitation on land has been responsible for transporting more nutrients via Changjiang river runoff input to the ECS. The increased fresh water runoff from the Changjiang may induce more upwelling on the continental shelf in the ECS, bringing more nutrients to support high productivity in the surface layer of the ECS. Thus, this study leads to a conclusion that the East Asian monsoon system plays a key role in not only controlling climate and ocean variability in the ECS, but also biological productivity that is tightly linked to global carbon cycles and atmospheric pCO2 variations.
Acknowledgements ...................................... i
Abstract (in Chinese) ................................ ii
Abstract .............................................. v
Contents ........................................... viii
Figures and Tables ................................... ix
Chapter 1. ........................................... 1
Chapter 2. .......................................... 48
Chapter 3. .......................................... 71
Chapter 4. .......................................... 98
Chapter 5. ......................................... 131
Chapter 6. ......................................... 162
Appendix A. ......................................... 201
Appendix B. ......................................... 203
Appendix C. ......................................... 211
Appendix D. ......................................... 225
Appendix E. ......................................... 248
Appendix F. ......................................... 251
Aizawa, C., Tanimoto, M. and Jordan, R.W., 2005. Living diatom assemblages from North Pacific and Bering Sea surface waters during summer 1999. Deep-Sea Research, 52(16-18): 2186-2205.
Bassinot, F.C. et al., 2002. Scientific Report of the WEPAMA Cruise, MD122/IMAGES VII. 453.
Beardsley, R.C., Limeburner, R., Yu, H. and Cannon, G.A., 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research, 4: 57-76.
Bemis, B.E., Spero, H.J., Bijma, J. and Lea, D.W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13(2): 150-160.
Blunier, T. and Brook, E.J., 2001. Timing of Millennial-Scale Climate Change in Antarctica and Greenland During the Last Glacial Period. Science, 291(5501): 109-112.
Chang, Y.-P. et al., 2005. Foraminiferal oxygen isotope stratigraphy and high-resolution organic carbon, carbonate records from the Okinawa Trough (IMAGES MD012404 and ODP Site 1202). Terrestrial, Atmospheric and Oceanic Sciences, 16(1): 57-73.
Chang, Y.-P., Yokoyama, Y., Kawahata, H. and Chen, M.-T., 2008. Millennial-scale planktic foraminifer sea surface temperature variability in the East China Sea of the past 40,000 years (IMAGES MD012404 from the Okinawa Trough). Terrestrial, Atmospheric and Oceanic Sciences: (in press).
Chen, C.-T.A., 1996. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta, 19: 523-527.
Chen, C.-T.A. and Wang, S.-L., 1998. Influence of intermediate water in the western Okinawa Trough by the outflow from the South China Sea. Journal of Geophysical Research, 103(C6): 12683-12688.
Chen, C.T.A., Ruo, R., Pai, S.C., Liu, C.-T. and Wong, G.T.F., 1995. Exchange of water masses between the East China Sea and the Kuroshio off northwestern Taiwan. Continental Shelf Research, 15(1): 19-39.
Chen, M.-P., Huang, C.-K., Lo, L. and Wang, C.-H., 1992. Last Pleistocene Paleoceanography of the Kuroshio Current in the Area Offshore Southeast Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 3(1): 81-110.
Chen, M.-T. and Huang, C.-Y., 1998. Ice-Volume Forcing of Winter Monsoon Climate in the South China Sea. Paleoceanography, 13(6): 622-633.
Chen, M.-T., Huang, C.-Y. and Wei, K.-Y., 1997. 25,000-year late Quaternary records of carbonate preservation in the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 129: 155-169.
Chen, M.-T., Wang, C.-H., Huang, C.-Y., Wang, L. and Sarnthein, M., 1999. A late Quaternary planktonic foraminifer faunal record of rapid climatic changes from the South China Sea. Marine Geology, 156: 85-108.
Chung, Y.-C. and Hung, G.-W., 2000. Partivulate fluxes and transports on the slope between the southern East China Sea and the South Okinawa Trough. Continental Shelf Research, 20: 571-597.
Dansgaard, W. et al., 1993. Evidence for general instability of past climatecfrom a 250-kyr ice-core record. Nature, 364: 218-220.
De Master, D.J., McKee, B.A., Nittrouer, C.A., Qian, J.C. and Chen, G.D., 1985. Rates of sediment accumulation and particle reworking based on radiochemical measurments from continental shelf deposits in the East China Sea. Continental Shelf Research, 4: 143-158.
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342: 637-616.
Fairbanks, R.G. et al., 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews, 24(16-17): 1781-1796.
Gong, G.-C., Wen, Y.-H., Wang, B.-W. and Liu, G.-J., 2003. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea. Deep-Sea Research, 50: 1219-1236.
Hsu, S.-K., Sibuet, J.-C. and Shyu, C.-T., 2001. Magnetic inversion in the East China Sea and Okinawa Trough: tectonic implications. Tectonophysics, 333(1-2): 111-122.
Huang, C.-Y. and Chiu, Y.-L., 2005. Sedimentological features of silt and sand depositions of ODP Site 1202, Leg 195, in southern Okinawa Trough. Terrestrial, Atmospheric and Oceanic Sciences, 16(1): 19-44.
Huang, C.-Y. et al., 1997. Deep sea and lake records of the Southern Asian paleomonsoons for the last 25 thousand years. Earth and Planetary Science Letters, 146: 59-72.
Huang, N.E. et al., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London, 454: 903-995.
Ijiri, A. et al., 2005. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 219: 239-261.
Jeng, W.-L. and Huh, C.-A., 2004. Lipids in suspended matter and sediments from the East China Sea Shelf. Organic Geochemistry, 35: 647-660.
Jeng, W.-L., Lin, S. and Kao, S.-J., 2003. Distribution of terrigenous lipids in marine sediments off northeastern Taiwan. Deep-Sea Research, 50(6-7): 1179-1201.
Jian, Z., Li, B., Huang, B. and Wang, J., 2000a. Globorotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary: evidence from the South China Sea and Okinawa Trough. Palaeogeography, Palaeoclimatology, Palaeoecology, 162: 287-298.
Jian, Z., Li, B., Pflaumann, U. and Wang, P., 1996. Late Holocene cooling event in the western Pacific. Science in China, 39(5): 543-550.
Jian, Z. et al., 2000b. Holocene Variability of the Kuroshio Current in the Okinawa Trough, Northwestern Pacific Ocean. Earth and Planetary Science Letters, 184(1): 305-319.
Jiang, H., Zheng, Y., Ran, L. and Seidenkrantz, M.-S., 2004. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography. Marine Micropaleontology, 53(3-4): 279-292.
Kao, S.-J., Lin, F.J. and Liu, K.-K., 2003. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough. Deep-Sea Research, 50: 1203-1217.
Kao, S.-J., Wu, C.-R., Hsin, Y.-C. and Dai, M., 2006a. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough. Geophysical Research Letters, 33: L16604, doi:10.1029/2006GL026822.
Kao, S.J., Hsu, S.C., Horng, C.S., Wei, K.Y. and Chen, J., 2005. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene. Geophysical Research Letters, 32: L15609, doi:10.1029/2005GL023139.
Kao, S.J. et al., 2006b. Monsoon forcing, hydrodynamics of the Kuroshio Current, and tectonic effects on sedimentary carbon and sulfur cycling in the Okinawa Trough since 90 ka. Geophysical Research Letters, 33: L05610, doi:10.1029/2005GL025154.
Kawahata, H. and Ohshima, H., 2004. Vegetation and environmental record in the northern East China Sea during the late Pleistocene. Global and Planetary Change, 41(3-4): 251-273.
Koba, M., 1992. Influx of the Kuroshio Current into the Okinawa Trough and inauguration of Quaternary coral-reef building in the Ryukyu Island Arc, Japan. The Quarernary Research of Japan, 31: 359-373 (in Japanese with English abstract).
Lambeck, K., Yokoyama, Y. and Purcell, T., 2002. Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stage 3 and 2. Quaternary Science Reviews, 21: 343-360.
Lee, C.S., Shore, G.G., Bibee, L.D., Lu, R.S. and Hilde, T.W.C., 1980. Okinawa Trough: Origin of a back-arc basin. Marine Geology, 35: 219-241.
Li, B., Jian, Z. and Wang, P., 1997. Pulleniantina obliquiloculata as a Paleoceanographic indicator in the south Okinawa Trough during the last 20,000 years. Marine Micropaleontology, 32: 59-69.
Li, T. et al., 2001. Heinrich Event Imprints in the Okinawa Trough: Evidence from Oxygen Isotope and Planktonic Foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 176: 133-146.
Lin, Y.-S. et al., 2006. The Holocene Pulleniatina Minimum Event revisited: Geochemical and faunal evidence from the Okinawa Trough and upper reaches of the Kuroshio current. Marine Micropaleontology, 59(3-4): 153-170.
Lopes, C., Mix, A.C. and Abrantes, F., 2006. Diatoms in northeast Pacific surface sediments as paleoceanographic proxies. Marine Micropaleontology, 60(1): 45-65.
Lowemark, L., Hong, W.-L., Yui, T.-F. and Hung, G.-W., 2005. A test of different factors influencing the isotopic signal of planktonic foraminifers in surface sediments from the northern South China Sea. Marine Micropaleontology, 55(1-2): 49-62.
Machida, H., 1999. The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan. Global and Planetary Change, 21(1-3): 71-94.
Machida, H., 2002. Volcanoes and Tephras in the Japan Area. Global Environmental Research, 6: 19-28.
Milliman, J.D. and Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. Journal of Geology, 91: 1-21.
Milliman, J.D., Shen, H.T., Yang, Z.S. and Meade, R.H., 1985. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Continental Shelf Research, 4: 37-45.
Mortlock, R.A. and Froelich, P.N., 1989. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research, 36(9): 1415-1426.
National Oceanic and Atmospheric Administration (NOAA), 1994. World Ocean Atlas 1994. National Oceanographic Data Center, NOAA, Washington, D.C., U.S.A.
North Greenland Ice Core Project members, 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 431(7005): 147-151.
Oguri, K. et al., 2000. Evidence for the offshore transport of terrestrial organic matter due to the rise of sea level: The case of the East China Sea continental shelf. Geophysical Research Letters, 27(23): 3893-3896.
Qu, T. et al., 2004. Can Luzon Strait Transport Play a Role in Conveying the Impact of ENSO to the South China Sea? Journal of Climate, 17(18): 3644-3657.
Sasaki, K. et al., 2006. 230Th/234U and 14C dating of a lowstand coral reef beneath the insular shelf off Irabu Island, Ryukyus, southwestern Japan. Island Arc, 15(4): 455-467.
Schonfeld, J. and Altenbach, A.V., 2005. Late Glacial to Recent distribution pattern of deep-water Uvigerina species in the north-eastern Atlantic. Marine Micropaleontology, 57: 1-24.
Sheu, D.D., Jou, W.-C., Chen, M.-J., Lee, W.-Y. and Lin, S., 1995. Variations of Calcium Carbonate, Organic Carbon and Their Isotopic Compositions in Surface Sediments of the East China Sea. Terrestrial, Atmospheric and Oceanic Sciences, 16(1): 115-128.
Sheu, D.D., Jou, W.C., Chung, Y.C., Tang, T.Y. and J.J., H., 1999. Geochemical and carbon isotopic characterization of particles collected in sediment traps from the East China Sea continental slope and the Okinawa Trough northeast of Taiwan. Continental Shelf Research, 19: 183-203.
Shieh, Y.-T., Wang, C.-H., Chen, M.-P. and Yung, Y.-L., 1997. The Last Glacial Maximun to Holocen environment changes in the southern Okinawa Trough. Journal of Asian Earth Sciences, 15(1): 3-8.
Sibuet, J.-C. et al., 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution. Journal of Geophysical Research, 103(B12): 30245-30267.
Sibuet, J.-C. et al., 1987. Back Arc Extension in the Okinawa Trough. Journal of Geophysical Research, 92(B13): 14041-14063.
Su, X. and Wei, K.-Y., 2005. Calcareous Nannofossils and Variation of the Kuroshio Current in the Okinawa Trough During the Last 13000 Years. Terrestrial, Atmospheric and Oceanic Sciences, 16(1): 95-111.
Sun, Y., Oppo, D.W., Xiang, R., Liu, W. and Gao, S., 2005. Last deglaciation in the Okinawa Trough: Subtropical northwest Pacific link to Northern Hemisphere and tropical climate. Paleoceanography, 20: PA4005, doi:10.1029/2004PA001061.
Thompson, W.G. and Goldstein, S.L., 2005. Open-System Coral Ages Reveal Persistent Suborbital Sea-Level Cycles. Science, 308(5720): 401-404.
Thunell, R., Miao, Q., Calvert, S.E. and Pedersen, T.F., 1992. Glacial-Holocene biogenic sedimentation patterns in the South China Sea: productivity variations and surface water pCO2. Paleoceanography, 7: 143-162.
Ujiie, H. et al., 2001. Upward decrease of organic C/N ratios in the Okinawa Trough cores: proxy for tracing the post-glacial retreat of the continental shore line. Palaeogeography, Palaeoclimatology, Palaeoecology, 165: 129-140.
Ujiie, H., Tanaka, Y. and Ono, T., 1991. Late Quaternary paleoceanographic record from the middle Ryukyu Trench slope, North-west Pacific. Marine Micropaleontology, 18: 115-128.
Ujiie, H. and Ujiie, Y., 1999. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northwestern Pacific Ocean. Marine Micropaleontology, 37: 23-40.
Ujiie, H. and Ujiie, Y., 2000. Distribution and Oceanogrphic Relationships of Modern Planktonic Formanifera in the Ryukyu Arc Region, Northwest Pacific Ocean. Journal of Foraminiferal Research, 30(4): 336-360.
Ujiie, Y., Ujiie, H., Taira, A., Nakamura, T. and Oguri, K., 2003. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera. Marine Micropaleontology, 49: 335-364.
Waelbroeck, C. et al., 1998. Improving past sea surface temperature estimates based on planktonic fossil faunas. Paleoceanography, 13(3): 272-283.
Wang, Y. et al., 2005. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308(5723): 854-857.
Wang, Y. et al., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182): 1090-1093.
Wang, Y.J. et al., 2001. A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science, 294: 2345-2348.
Wei, K.-Y., 2006. Leg 195 Synthesis: Site 1202-Late Quaternary Sedimentation and Paleoceanography in the Southern Okinawa Trough. In: M. Shinohara, M.H. Salisbury and C. Richter (Editors), Proceedings of the Ocean Drilling Program, Scientific Results, pp. 1-31.
Wei, K.-Y., Mii, H. and Huang, C.-Y., 2005. Age Model and Oxygen Isotope Stratigraphy of Site ODP1202 in Southern Okinawa Trough, Northwestern Pacific. Terrestrial, Atmospheric and Oceanic Sciences, 16(1): 1-17.
Xu, X. and Oda, M., 1999. Surface-water evolution of the eastern East China Sea during the last 36,000 years. Marine Geology, 156: 285-304.
Yokoyama, Y., Esat, T.M. and Lambeck, K., 2001. Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. Earth and Planetary Science Letters, 193(3-4): 579-587.
You, Y. et al., 2005. The South China Sea, a cul-de-sac of North Pacific Intermediate Water. Journal of Oceanography, 61(3): 509-527.
You, Y. et al., 2000. Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. Journal of Geophysical Research, 105: 3253-3280.
You, Y. et al., 2003. Transport of North Pacific Intermediate Water across Japanese WOCE sections. Journal of Geophysical Research, 108(C6): 3196, doi:10.1029/2002JC001662.
Yuan, D. et al., 2004. Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon. Science, 304(5670): 575-578.
Zhao, Y. and Yan, M., 1994. Geochemistry of sediments of the China Shelf Sea. Science Press: 203.
Zhou, H. et al., 2007. Sea surface temperature reconstruction for the middle Okinawa Trough during the last glacial-interglacial cycle using C37 unsaturated alkenones. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2-4): 440-453.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊