(3.236.214.19) 您好!臺灣時間:2021/05/07 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:梁哲誌
研究生(外文):Zhe-Zhi Liang
論文名稱:金屬材料表面塗覆金屬玻璃之疲勞行為與微結構特性研究
論文名稱(外文):Correlation study of Fatigue Behavior and Microstructure of Metallic Materials Coated with a Glass-Forming Metallic Thin Film
指導教授:黃榮潭
指導教授(外文):Rong-Tan Huang
學位類別:碩士
校院名稱:海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:疲勞行為金屬玻璃材料測試系統塊狀金屬玻璃金屬成形能力薄膜金屬玻璃
外文關鍵詞:Fatigue Behaviormetallic glassesMaterial Test SystemBulk metallic glassesglass-forming abilityThin film metallic glasses
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:0
本研究乃利用射頻磁控濺鍍系統將Cu51Zr24Hf18Ti7 及Cu31Zr47Al13Ni9(atomic percent, at.%)薄膜濺鍍在316L不�袗�及Ni基基材上,以探討鍍膜後基材之疲勞性質的改善。在鍍膜前基材必須先經過電解拋光( electrical polishing )以確保表面光滑,之後將濺鍍好的試片,置入由電腦控制的材料測試系統( Material Test System )中進行疲勞測試,結果顯示鍍後鋼材的疲勞性質(強度及壽命) 均呈現顯著地改善。其中,316L不�袗�濺鍍Cu51Zr24Hf18Ti7薄膜有最好的疲勞壽命改善,其疲勞壽命改善多達4,490 %;而Zr47Cu31Al13Ni9薄膜次之,疲勞壽命其亦改善了3,224 %; 但Zr47Cu31Al13Ni9鍍在Ni基材上的疲勞壽命改善效果最差,其疲勞壽命僅改善約390 %。從顯微結構探究影響疲勞強度的原因,發現在316L不�袗�基材與在Ni基基材分別濺鍍上Zr47Cu31Al13Ni9薄膜,前者呈現較佳的疲勞強度與壽命改善,除因316L不�袗�基材表面有較小之粗糙度外,在鍍膜後,薄膜與316L不�袗�基材之間呈現明顯較厚的界面氧化層,使得316L不�袗�基材表面之粗糙度更小因而呈現較佳附著性,而有較佳疲勞性質。另外,在針對不同金屬薄膜(Cu51Zr24Hf18Ti7薄膜與Zr47Cu31Al13Ni9薄膜)濺鍍在316L不�袗�基材上,Cu51Zr24Hf18Ti7薄膜呈現更佳的疲勞性質,此乃因為Cu51Zr24Hf18Ti7薄膜形成非晶質夾雜奈米晶結構,而Zr47Cu31Al13Ni9薄膜形成非晶質夾雜較大晶粒(10 ~ 40nm)。結果當疲勞破壞的過程,若表面開始產生裂縫,則鍍膜會阻止裂縫擴展。隨著破壞加劇,裂縫進而往鍍膜方向擴展,然後裂縫再擴展至基材。而當薄膜結構呈現非晶質夾雜較大晶粒時,會比薄膜結構呈現非晶質夾雜奈米晶試樣較易產生穿晶破裂,而使其疲勞性質較差,因此,Cu51Zr24Hf18Ti7薄膜可呈現更佳的疲勞性質。
The glass-forming metal films, Cu51Zr24Hf18Ti7 and Cu31Zr47Al13Ni9 (atomic percent, at.%) deposited respectively on the two substrates of 316L stainless steel (316L) and Ni-based alloy (C2000) using magnetron sputtering, have been investigated by using high reso?lution transmission electron mi?croscopy (HRTEM) coupled with nanobeam energy dis?persive x-ray (EDX). The substrates were first carried out electrical polishing before depositing to the smooth surface. The as-deposited specimens were following proceeded fatigue test controlled by a computer in the Material Test System (MTS). Accordingly, the fatigue strength and life of the specimens coating with each glass-forming metal film are all much better than those without coating. It was found that 316L substrate coated with a 200 nm glass-forming Cu51Zr24Hf18Ti7 film shows the highest fatigue life improvement, which was considerably improved up to 4,490 %. The 316L substrate coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film shows the next-highest fatigue life improvement, which was also improved up to 3,224 %. However , the Ni-based substrate coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film shows the worst fatigue life improvement, which was just up improved up to 390 %.
To further study the relationship between fatigue property improvement and microstructure, these specimens were sequentially characterized by using HRTEM coupled with nanobeam EDX. The results are divided into two groups: I). Both 316L and Ni-based coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film ; and II). 316L substrate coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film but 316L substrate coated with a 200 nm glass-forming Cu51Zr24Hf18Ti7 film. It was clear that 316L substrate coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film exhibited the better fatigue strength and life improvement than that of Ni-based substrate coated with the film of the same thickness and composition. Very likely, it was due to the improvement of surface roughness of the substrate . From the HRTEM cross-sectional images, 316L substrate coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film shows a thicker oxygen-rich interlayer (~ 5 nm) which offer a smoother surface formed on the 316L substrate before the film coating , thereby resulting in a good adhesion ability to enhance fatigue limit. Moreover, 316L substrate coated with a 200 nm glass-forming Cu51Zr24Hf18Ti7 film shows the better fatigue strength and life improvement than the substrate coated with a 200 nm glass-forming Zr47Cu31Al13Ni9 film. The main reason for the better performance of Cu-based BMG film is due to the formation of amorphous matrix involved nano-crystal, while the Zr47Cu31Al13Ni9 film composed of amorphous matrix involved coarse crystal pecipitates. It is well known that the coarse crystal would cause the “transgranular” behavior , on the contrary, the nano-crystal could reinforce the strength of the thin film. Consequentially, 316L substrate coated with a 200 nm glass-forming Cu51Zr24Hf18Ti7 film shows the highest fatigue life improvement.
目錄
中文摘要………………………………………………………………..I

英文摘要………………………………….. III

內文目錄………………………………….. V

表目錄…………………………………… VII

圖目錄………………………………………. VIII


第一章 前言 1
第二章 文獻回顧 4
2-1 塊狀金屬玻璃的發展 4
2-2 塊狀金屬玻璃之機械性質 6
2-3 銅基金屬玻璃的機械性質和歷史 8
2-4 薄膜金屬玻璃 8
2-5 濺鍍金屬玻璃薄膜在316L不�袗�基材上 10
2-5-1 金屬玻璃鍍膜對疲勞強度的影響 10
2-5-2 疲勞破壞的機構和特徵 11
2-5-3 試片表面的平整度與鍍膜的關係 12
2-5-4 薄膜內的殘留應力(residual stress)的影響 13
第三章 實驗步驟 26
3-1濺鍍金屬玻璃薄膜在基材上 26
3-2穿透式電子顯微鏡(Transmission Electron Microscope) 27
3-3 TEM試片之製備 33

第四章 結果與討論 37
4-1 Zr47Cu31Al13Ni9薄膜分別濺鍍在316L不�袗�與Ni基材上 41
4-2 316L不�袗�基材上分別濺鍍上Zr47Cu31Al13Ni9與Cu51Zr24Hf18Ti7薄膜 53
4-3討論 43
第五章 結論 67
第六章 未來研究方向 80
Reference 81

表目錄
表2-1 各種不同合金系統之BMG的最大尺寸發展 15
表3-1 實驗流程 31
表4-1 316L不�袗�與Ni基基材濺鍍上Zr47Cu31Al13Ni9與Cu51Zr24Hf18Ti7薄膜後疲勞壽命與強度改善程度表 52
圖目錄
圖 2-1 結晶性和非晶性材料之比體積-溫度行為的對照圖 16
圖2-2 拉伸應力和楊氏模數的比較圖 17
圖2-3 (a) 剛沉積完的薄膜DSC曲線圖,以及在不同退火溫度下試片其(b)微硬度與(c)電阻變化曲線 18
圖2-4 在不�袗�表面鍍上200 nm Z47Al13Cu31Ni9 薄膜和未鍍膜的疲勞強度的比較 19
圖2-5 在Ni基合金表面鍍上200 nm Zr 基薄膜和未鍍膜的疲勞強度的比較 20
圖2-6 在不�袗�鍍200 nm Cu51Zr24Hf18Ti7膜和未鍍膜的疲勞強度的比較 21
圖2-7 材料受應力過程的模擬圖 22
圖2-8 316L不�袗�鍍上200 nm Zr47Al13Cu31Ni9 薄膜的試片,經過 疲勞破壞之後的SEM表面型態圖 23
圖2-9 316L不�袗�表面鍍上200 nm Zr47Al13Cu31Ni9 薄膜之SEM 上視圖與側視圖 24
?2-10 316L不�袗�未鍍上與鍍上Zr47Al13Cu31Ni9 薄膜之原子力顯微鏡(AFM)表面粗糙度的結果 25
圖3-1 疲勞試驗試片示意圖 32
圖3-2 疲勞試驗設備示意圖 33
圖3-3 TEM結構示意圖 34
圖3-4 穿透式電子顯微鏡之構造(照明系統、試片基座與成像系統) 35
?3-5 Dimpling 的過程示意圖 36
圖3-6 第一面研磨示意圖......................................................................36
圖3-7 第二面研磨示意圖......................................................................36
圖4-1 Zr47Cu31Al13Ni9薄膜批覆在316L不�袗�基材上之橫截面TEM
明場影像......................................................................................53
圖4-2 Zr47Cu31Al13Ni9薄膜濺鍍在316L不�袗�上之橫截面HRTEM影像 54
?4-3 Zr47Cu31Al13Ni9薄膜濺鍍在316不�袗�基材上之plan-view
TEM影像 55
圖4-4 Zr47Cu31Al13Ni9薄膜濺鍍在316不�袗�基材上之nanobeam EDX成分分佈圖 56
圖4-5 Ni基基材濺鍍上200 nm Zr47Cu31Al13Ni9薄膜之橫截面TEM
明場影像 57
圖4-6 Ni基基材濺鍍上200 nm Zr47Cu31Al13Ni9薄膜之plan-view
TEM影像 58
圖4-7 Zr47Cu31Al13Ni9薄膜濺鍍在Ni基基材之nanobeam EDX成分分 佈圖 59
圖4-8 Zr47Cu31Al13Ni9薄膜濺鍍在在Ni基基材之橫截面HRTEM影
像 60
圖4-9 Cu51Zr24Hf18Ti7 薄膜濺鍍在316L不�袗�基材上之橫截面TEM
明場影像 61
圖4-10 Cu51Zr24Hf18Ti7 薄膜濺鍍在316L不�袗�基材上之plan-view
TEM影像 62

圖4-11 Cu51Zr24Hf18Ti7 薄膜濺鍍在316L不�袗�基材上之HRTEM影
像 63
圖4-12 Cu51Zr24Hf18Ti7 薄膜濺鍍在316L不�袗�基材上之橫截面
HRTEM影像 64
圖4-13 Cu51Zr24Hf18Ti7 薄膜濺鍍在316L不�袗�基材上之nanobeam
EDX成分分佈圖 65
圖4-14 以AFM量測316L不�袗�與Ni基基材濺鍍前之表面粗糙度
66
Reference
1. C. L. Chiang, J. P. Chu, T. Mahalingam, T.G. Nieh, and Y. Kawamura “Superplasticity in a Bulk Amorphous Pd-40Ni-20P Alloy: A Compression Study”, The 2nd International Conference on Bulk Metallic Glasses, Keelung, Taiwan, 2001
2. 朱瑾, 江圳陵, 林俊輝, 林於隆,中國材料科學學會2005論文集
3. D. H. Xu, G. Duan, and W. L. Johnson, Phys. Rev. Lett., 92, 245504 (2004)
4. J.P. Chu, C.L. Chiang, H. Wijaya, C.W. Wu, “Potential Applications of Metallic Glasses: Thin Films and Nano-/Microforming Parts”, Prague, Czech, Euro MAT, 2005
5. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983)
6. A. Inoue, B. L. Shen, H. Koshiba, H. Kato, and A. R.Yavari, Nature Mater., 2, 661 (2003)
7. J. P. Chu, C. L. Chiang, H. Wijaya, R. T. Huang, C. W. Wu, B. Zhang, W. H. Wang, and T. G. Nieh, “Compressive Deformation of a Bulk Ce-Based Metallic Glass”, Scripta Materialia, 55, 227 (2006)
8. William D., Callister. Jr., “Materials Science and Engineering An Introduction”, sixth edition, Wiley company, p 427-428(2006)
9. W. Klement, R. H. Willens, and P. Duwez, Nature, 187, 869 (1960)
10. H. S. Chen, Rep. Prog. Phys., 43, 353 (1980)
11. H. W. Kui, A. L. Greer, and D. Turnbull, Appl. Phys. Lett., 45, 615 (1984)
12. A. Inoue, Acta Mater., 48, 279 (2000)
13. A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, 2342 (1993)
14. Z. X. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, T. Okada, and W. Utsumi, J. Phys: Condens Matter, 15, 5923 (2003)
15. 江圳陵, “多成份銅基及鋯基薄膜及其應用之研究”, 民國九十五國立台灣海洋大學材料工程研究所博士論文, 2006/07
16. Z. X. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, T. Okada, and W. Utsumi, J. Phys: Condens Matter, 15, 5923 (2003)
17. A. Inoue, B. L. Shen, H. Koshiba, H. Kato, and A. R. Yavari, Acta Mater., 52, 1631 (2004)
18. T. Zhang and A. Inoue, Mater Trans JIM, 40, 301 (1999)
19. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983)
20. P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, J. Nanosci. Nanotech., 5, 416 (2005)
21. J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson, and C. H. Kuo, Phys. Rev. B, 69, 113410 (2004)
22. J. P. Chu, C. L. Chiang, T. Mahalingam, and T. G. Nieh, Scripta Mater., 49, 435 (2003)
23. W. J. Kim, D. S. Ma, and H. G. Jeong, Scripta Mater., 49, 1067 (2003)
24. J. P. Chu, C.L. Chiang, T. G. Nieh, Y. Kawamura, Intermetallic, 10, 1195 (2002)
25. X. H. Lin and W. L. Johnson., J. Appl. Phys., 78, 6514 (1995)
26. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, 415 (1983)
27. T. Zhang, K. Kurosaka, and A. Inoue, Mater. Trans., 42, 2042 (2001)
28. D. H. Xu, G. Duan, W. L. Johnson, and C. Garland, Acta Mater., 52, 3493 (2004)
29. P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, J. Nanosci. Nanotech., 5, 416 (2005)
30. C. L. Chiang, F. X. Liu, J. P. Chu, P. K. Liaw, and R. A. Buchanan, “A 200 nm Thick Glass-Forming Metallic Film for Fatigue-Property Enhancements,” Appl. Phys. Lett, 88, 131902 (2006)
31. E. S. Puchi-Cabrera, F. Mat?nez, I. Herrera, J. A. Berrios, S. Dixit, and D. Bhat, Surf. Coat. Technol., 182, 276 (2004)
32. J. A. Berrios, J. G. La Barbera-Sosa, D. G. Teer, and E. S. Puchi-Cabrera, Surf. Coat. Technol., 179, 145 (2004)
33. J. Schroers and W. L. Johnson, Phys. Rev. Lett., 93, 255506 (2004)
34. J. Lu, G. Ravichandran, and W. L. Johnson, Acta Mater., 51, 3429 (2003)
35. William D., Callister. Jr., “Materials Science And Engineering An Introduction”, sixth edition, Wiley company, p 211~212 (2006)
36. ASM Handbook, Corrosion: Fundamentals, Testing, and Protection, Vol. 13A, 142 (2003)
37. William D., Callister. Jr., “Materials Science and Engineering An Introduction”, sixth edition, Wiley company, p 400~403 (2006)
38. K. S. Lee, T. K. Ha, S. Ahn, and Y. W. Chang, J. of Non-Crystalline Solids, 317, 193 (2003)
39. T. G. Nieh, T. Mukai, C. T. Liu, and J. Wadsworth, Scripta Mater., 40, 1021 (1999)
40. Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto, Scripta Mater., 37, 431 (1997)
41. B. Zhang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Phys. Rev. B, 70, 224208 (2004)
42. A. Inoue, H. Yamaguchi, T. Zhang, and T. Masumoto, Mater. Trans. JIM, 31,104, (1990)
43. A. Peker and W. L. Johnson, Appl. Phys. Lett., 63, 2342 (1993)
44. N. Nishiyama and A. Inoue, Mater. Trans. JIM, 37, 1531 (1996)
45. J. Schroers and W. L. Johnson, Appl. Phys. Lett., 84, 3666 (2004)
46. Y. C. Kim, W. T. Kim, and D. H. Kim, Mater. Sci. and Eng. A, 3375, 127 (2004)
47. J. Shen, Q. Chen, J. Sun, H. Fan, and G. Wang, Appl. Phys. Lett., 86, 151907 (2005)
48. David B. Williams, C. Barry. Cater., “Transmisstion Electron Microscope”, Plenum company, P. 131~139 (1996)
49. C. Fan, L. Kecskes, T. Jiao, H. Choo, A. Inoue and P.Liaw, Mater. Trans., 47, 817~821 (2007)
50. 周雅玲, “A study on Property Improvements of Sputtered Copper Films Using Glass-Forming Film and Oxide”, 國立台灣海洋大學材料工程研究所碩士論文, 2007/07
51. Robert E. Reed-Hill, Reza Abbaschian, “Physical Metallurgy Principals”, third edition, International Thomson Publishing, p. 192~194 (1992)
52. David B. Williams, C. Barry. Cater., “Transmisstion Electron Microscope”, Plenum company, P. 73~80 (1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔