(3.80.6.131) 您好!臺灣時間:2021/05/14 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:尤玨元
研究生(外文):Chueh-Yuan Yu
論文名稱:濺鍍多層銅/氧化銅膜顯微結構與奈米壓印性質之研究
論文名稱(外文):Study on Microstructure and Nanoindentation of Sputtered Cu/Cu(O) Multilayered Films
指導教授:朱瑾朱瑾引用關係黃榮潭
指導教授(外文):J. P. ChuR. T. Huang
學位類別:碩士
校院名稱:海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:121
中文關鍵詞:薄膜多層膜奈米壓印
外文關鍵詞:Thin filmMultilayerNanoindentation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:223
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本實驗以射頻磁控濺鍍法於矽晶片與不鏽鋼基材鍍製Cu-CuOx和Cu-Cu奈米多層薄膜,進行其機械性質和微觀結構的研究。在Cu-CuOx奈米多層膜中,不同的銅層-氧化銅層膜厚分別估計為38nm、53nm、73nm、和 82 nm。奈米多層膜的硬度會隨著單層膜厚的減少而增加而楊氏膜數會隨著硬度的上升而下降。在Cu-Cu奈米多層膜製程為在鍍單層銅膜中間隔10分鐘而估計單層膜厚分別約為8 nm、28 nm和70nm,實驗結果未明顯顯示出硬度隨著單層膜厚減少或是層數增加而上升;Cu-CuOx多層膜在AES的結果中可觀察到明確層狀結構。XRD中指出多層膜中主要得成分組成為Cu(111)和Cu2O(220),此發現與TEM結果相符。冷加工延軋多層膜的實驗中得到多層膜硬度和楊氏模數會隨著加工量的增加而增加。利用SEM和FIB觀察經過加工後所產生的裂痕和薄膜微結構隨著不同加工量的變化,發現加工有利於膜的緻密性,且孔洞、層狀組織和晶界會隨著加工量的增加趨於減少和不明顯。micropillar的試片,FIB的影像中可以看出micropillar的直徑大小約為611-686nm,高-直徑比(aspect ratios)約1.94:1 ~ 4.09:1,micropillar的機械性質量測結果顯示出micropillar產生破裂的應力大小約為0.4-0.5 GPa,利用FIB觀察經壓印過後micropillar可以發現micropillar裂痕是從膜和基板間發生。
Abstract
In this study, the nano-scale multilayered films with two alternating individual layers, copper (Cu) and copper oxide (CuOx) were prepared by the radio frequency sputtering system deposited on Si and stainless steel substrates. The individual layer thicknesses were 38nm, 53nm, 73nm and 82 nm. The nanoindentation results indicate the hardness increases with decreasing individual layer thickness and the modulus decreases with increasing hardness. For multilayers manufactured by depositing Cu with interruption time about 10 minutes between each Cu layer, the individual layer thicknesses were 8 nm, 28 nm and 70nm. The enhancement in hardness is not apparent with increasing number of layers or decreasing individual layer thickness. The layer structure in Cu/Cu multilayer is not observed in SIMS results, but is clearly seen in AES results for Cu/Cu2O multilayer. In XRD results, the Cu(111) and Cu2O(220) are the major components in the multilayered and samples are consistent with TEM results. For the cold rolling study, the hardness and modulus increase with increasing reduction ratios. SEM and FIB results show the distribution and size of crack and the changes of layer structure in different reduction ratios in the cold rolled samples. The cold rolling is helpful in densing film structure such as eliminations of voids, layer and grain boundary. For the micropillars, the FIB images show the micropillar diameters were in a range of 611-686 nm and the height-to-diameter aspect ratios were from 1.94:1 to 4.09:1. The stress of micropillar is ~0.4-0.5 GPa and the FIB images obtain that the micropillars were fractured interface between film and substrate.
Table of Contents
摘要 I
Abstract II
Table of Contents IV
Table Lists V
Figures Lists VII
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Properties and applications of nanoscale multilayers 4
2.1.1 Hardness properties by nanoindentation 4
2.1.2 Hardness properties of work hardening multilayers 11
2.1.3 Hardnedd properties of size effect 12
2.2 Principle of nanoindenter system 14
2.2.1 Indenter shape function 18
2.2.2 Continuous stiffness measurement, CSM 19
2.3 Principle of sputtering 22
2.3.1 Radio frequency (r.f.) sputtering 25
2.3.2 Magnetron sputtering 27
2.3.3 Sputtering of alloys 30
2.3.4 Nucleation and growth of sputter-deposited films 31
2.3.5 Thornton zone 34
Chapter 3 Experimental Procedure 38
3.1 deposition of multilayer films 38
3.2 Cold rolling of films 39
3.3 Sample preparation by focused ion beam (FIB) 39
3.3.1 Sample for nanoindentation rest 43
3.3.2 Samples for rolling test 43
3.3.3 Samples for micropillar 43
3.4 Characterizations 47
3.4.1 Crystal structure 47
3.4.2 Microstructural analyses 47
3.4.3 Chemical analysis 48
3.4.4 Mechanical properties analyses 48
Chapter 4 Results and Discussion 49
4.1 Chemical and crystallographic analysis 49
4.1.1 Chemical analysis (EPMA) 49
4.1.2 Crystallography (XRD) 50
4.1.3 TEM microstructural study 55
4.1.4 Chemical Analysis by SIMS and AES 61
4.1.5 Mechanical properties (Nanoindentation) 67
4.2 Cold rolling test results 74
4.2.1 Crystallography (XRD) 77
4.2.2 Microstructure (SEM and FIB) 79
4.2.3 Mechanical properties (Nanoindentation) 89
4.3 Micropillar results 94
4.3.1 Microstructure (SEM and FIB) 94
4.3.2 Mechanical properties (Nanoindentation) 94
Chapter 5 Summary and Conclusions 104
Future works 106
Reference 107
References
1. Harish C. Barshilia, K.S. Rajam Surface and Coatings Technology
2. S.P. Wen, R.L. Zong. Acta Mater 55, 345 (2007).
3. Misra A, Hirth JP, Hoagland RG. Acta Mater 53 (2005).
4. Misra A, X. Zhang. Acta Mater 53, 221 (2007)
5. Michael D. Uchic, Dennis M. Dimiduk, Science 13 (2004).
6. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992).
7. S.A. Barnett M.H. Francombe, J.L. Vossen (Eds.), Physics of Thin
8. Misra A, Kung H, Adv Eng Mater, 3 (2001).
9. Phillips MA, Clemens BM, Nix WD. Acta Mater 51, 3157 (2003)
10. Clemens BM, Kung H, Barnett SA. MRS Bull 24 (1999)
11. A.L. Greer, R.E. Somekh, in: R.W. Cahn, P. Haasen, E.J. Kramer (Eds.), Materials Science and Technology – A Comprehensive Treatment, 15, VCH Publishers, New York, 1993, p.331.
12. 蕭博文, 崑山科大機械工程碩士論文, Investigation of the microstructure and wear properties of TiN/CrN multilayer films.
13. M.V. Swain, J. Mencik, Thin Solid Film 253, 204 (1994).
14. K.J. Ma A. Bloyce, R.A. Andrievski, G.V. Kalinnikov, Surf. Coat. Technol. 94-95 (1997).
15. J.B. Pethica, R. Hutchings, W.C. Oliver, Phil. Mag. A 48 (1983).
16. Misra A, Hirth JP, Hoagland RG, Acta Mater 52, 2387 (2004).
17. Misra A, Hirth JP, Kung H. Phil Mag A 82, (2002).
18. S. S. Brenner, J. Appl. Phys. 27, 1484 (1956).
19. S. S. Brenner, J. Appl. Phys. 28, 1023 (1957).
20. M. A. Haque, M. T. A. Saif, Sensors Actuators A 97-98, 239 (2002)
21. H. D. Espinosa, B. C. Prorok, M. Fischer, J. Mech. Phys.
22. H. D. Espinosa, B. C. Prorok, B. Peng, J. Mater. Res. 52 667 (2004).
23. M. D. Uchic, D. M. Dimiduk, J. N. Florando, W. D. Nix, in Materials research society Symposium Proceedings, E. P. George et al. 753 (2003).
24. W.C. Oliver, G. M. Pharr, Materials Research Society 7, 1564(1992).
25. 丁志華, 管正平, 黃新言, 戴寶通, 奈米通訊 9, 4.
26. Lehoczky SL. Phys Rev Lett 41,1814 (1978).
27. Lehoczky SL. J Appl Phys 49,5979 (1978).
28. Edited by K.K. Schuegraf, Noyes, Park Ridge, “Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, Equipment and Applications”, N.J. (1988).
29. J. A. Thornton, ”Physical Vapor Deposition” in ”Semiconductor Materials and process Technologies”, G. E. McGuire, Ed., Noyes, Park Ridge, NJ (1984).
30. B. A. Movchan, and A. V. Demchishin, Physics of Metals and Metallography 28, 83 (1969).
31. Peter M. Anderson, John F. Bingert, Amit Misra, Acta mater 51:6059 (2003).
32. B. D. Cullity, S. R. Stock “Elements of x-ray diffractiom” , NJ (2001).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔