(3.226.72.118) 您好!臺灣時間:2021/05/13 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王建忠
研究生(外文):Chien-Chung Wang
論文名稱:機械合金法製備之Cu-Zr-Ti塊狀金屬玻璃基複合材料之磨耗與腐蝕特性研究
論文名稱(外文):Wear and Corrosion Behaviors of Mechanically Alloyed Cu-Zr-Ti Bulk Metallic Glass Composites
指導教授:李丕耀
指導教授(外文):Pee-Yew Lee
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:254
中文關鍵詞:機械合金金屬玻璃複合材料
外文關鍵詞:Mechanically AlloyedMetallic GlassCoposites
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗選取具有高玻璃形成能力的Cu60Zr30Ti10合金成份作為基材,另外添加延性耐火元素Ta作為強化相,使用固態反應機制之機械合金法製備具奈米級複合相微觀結構之複合材料粉末,並探討強化相與奈米結晶相在基地中散佈情形及其熱行為、微結構變化;隨後再配合後續之真空熱壓技術將此複合材料粉末以不同的熱壓參數製備成型,同時探討不同熱壓條件對成型塊材的影響,據此評估結合機械合金法與真空熱壓製程之粉末冶金途徑製備塊狀Cu-Zr-Ti奈米晶複合材料之可行性。
此外,將真空熱壓處理所製備的塊狀金屬玻璃基複合材料分別進行微硬度、磨耗實驗及電化學動態極化實驗,在機械性質方面,添加第二相Ta金屬元素進入Cu-Zr-Ti合金系統中能夠明顯提昇合金材料的微硬度值和耐磨耗性。在電化學性質方面,Cu-Zr-Ti塊狀金屬玻璃合金和Cu-Zr-Ti-Ta塊狀金屬玻璃基複合材料分別在1N H2SO4、HNO3、NaOH水溶液中皆呈現均勻的腐蝕形態,觀察腐蝕表面形態並沒有發現孔蝕的情形,顯示在這三種水溶液中有良好的抗蝕性質;在3 mass% NaCl水溶液中,則出現不均勻的腐蝕形態,腐蝕表面可以明顯觀察到明顯孔蝕情形,顯示Cu-based塊狀金屬玻璃合金抵抗Cl-攻擊的能力較差,而添加Ta元素後合金塊材嚴重的孔蝕情形獲得改善。
In this study, the preparation of (Cu60Zr30Ti10)91Ta9 bulk metallic glass composites through powder metallurgy route was explored. The X-ray diffraction and transmission electron microscopy results show the (Cu60Zr30Ti10)91Ta9 metallic glass composite powders can be formed after a 5-hour of high-energy ball milling. The metallic glass composite powders were found to exhibit a supercooled liquid region before crystallization. (Cu60Zr30Ti10)91Ta9 bulk metallic glass composites were synthesized by vacuum hot pressing the as-milled (Cu60Zr30Ti10)91Ta9 composites powders at 753 K in the pressure range of 0.72~1.20 GPa. Bulk metallic glass composite with Ta nanoparticles homogeneously embedded in a highly dense nanocrystalline/amorphous matrix was successfully prepared. It is found that the pressure could enhance the thermal stability and suppress the formation of nanocrystalline phase in (Cu60Zr30Ti10)91Ta9 BMG composites. The corrosion behavior of (Cu60Zr30Ti10)91Ta9 BMG composites in four different corrosive media was studied by potentiodynamic method. The results of polarization curves show lower corrosion rates and current densities were obtained in 1N H2SO4, NaOH and HNO3 solutions. The XPS results revealed that the formation of Zr-, Ta- and Ti-rich passive oxide layers provide a high corrosion resistance in 1N H2SO4 and HNO3 solutions while the breakdown of the protective film by Cl- attack was responsible for pitting corrosion in 3wt % NaCl solution. The formation of oxide films, the nucleation and growth of pitting were discussed by associating microstructural investigations with the results of electrochemical tests.
摘要…………………………………………………….……………..….Ⅰ
英文摘要…………………………………………………….…………..Ⅱ
目錄…………………………………………………….……………..….Ⅲ
表目錄……………………………………………………………….......Ⅵ
圖目錄………………………………………………………………..….Ⅸ

第一章 前 言………………………………………………….……..….1

第二章 文獻回顧……………..………………………..…………..…...5
2.1 銅基金屬玻璃合金………………………………………..……..……5
2.1-1銅基塊狀金屬玻璃合金………………………..……….….…...5
2.1-2銅基金屬玻璃相複合材料……………………………………...5
2.2以固態反應製程製備奈米結構複合材料……………………………13
2.2-1奈米結構複合材料背景.………………………………………13
2.3奈米晶材料的形成……………………………………………………15
2.3-1奈米晶粉末固化製程背景……………………….……………15
2.3-2奈米晶粉末之熱力及動力效應……………………………….16
2.4 銅基金屬玻璃合金腐蝕…………………………………………..…18
2.4-1 銅基金屬玻璃相複合材料之腐蝕機制……………………...21

第三章 實驗步驟……………………………………...………………48
3.1機械合金法之處理…………………………………………………...48
3.2真空熱壓處理………………………………………………………...48
3.3 特性檢測……………………………………………………………..49
3.3-1 X-ray繞射分析……………………………………………….49
3.3-2同步輻射檢測…………………………………………………49
3.3-3 DSC與DTA熱分析………………………………………….49
3.3-4掃描式電子顯微鏡(SEM)觀察……………………………….50
3.3-5 穿透式電子顯微鏡(TEM)觀察……………………………...50
3.3-6緻密度試驗…………………………………………….……...51
3.4 機械性質……………………………………………………………..51
3.4-1微硬度試驗……………………………………………………51
3.4-2 磨耗試驗…………………………………………………..….51
3.5 電化學性質…………………………………………………………..52
3.5-1動態極化實驗…………………………………………………52
3.5-2 X射線光電子能譜儀(XPS)分析……………………………..53

第四章 合金粉末與塊材檢測………………………………………59
4.1銅基金屬玻璃合金粉末特性檢測…………………………………...59
4.2銅基金屬玻璃相複合材料粉末特性檢測…………………………...60
4.3塊狀銅基金屬玻璃相複合材料特性檢測…………………………...62
4.3-1 Cu60Zr30Ti10塊狀金屬玻璃合金……………………………...62
4.3-2(Cu60Zr30Ti10)91Ta9塊狀金屬玻璃相複合材料…………….…63
4.4 熱壓塊材之外觀及相對密度………………………………………..65

第五章 機械性質……………………………………………………...98
5.1維克氏硬度(Hv)………………………………………………….…...98
5.2 磨耗試驗……………………………………………………………..98
5.2-1 Cu-Zr-Ti塊狀金屬玻璃合金………………………………...98
5.2-2 Cu-Zr-Ti-Ta金屬玻璃相複合材料…………………………101

第六章 電化學性質…………………………………………………139
6.1 Cu60Zr30Ti10塊狀金屬玻璃合金……………………………………139
6.2 (Cu60Zr30Ti10)91Ta9金屬玻璃相複合材料………………………….143
6.3 Cu60Zr30Ti10結晶材料………………………………………………147
6.4 304不�袗�………………………………………………………..…148

第七章 討論…………………………………………………………..182
7.1 金屬玻璃合金基本性質……………………………………………182
7.1-1 金屬玻璃合金粉末………………………………………….182
7.1-2 金屬玻璃合金塊材……………………………...………..…185
7.2 機械性質……………………………………………………………195
7.2-1微硬度值的影響因子………………………………………..195
7.2-2 磨耗損失…………………………………………………….196
7.2-3 磨耗速率與磨耗阻抗……………………………………….198
7.2-4 磨耗機制…………………………….………………………200
7.2-5 添加第二相高熔點元素對合金塊材的影響……..……..….202
7.3 金屬玻璃合金電化學性質…………………………………………205
7.3-1 Cu-Zr-Ti金屬玻璃合金……………………………………..205
7.3-2 Cu-Zr-Ti-Ta金屬玻璃合金…………………………………207
7.3-3 添加Ta金屬元素後對腐蝕行為的影響……………………213
7.3-4 影響合金塊材腐蝕行為的因素…………………………….215

第八章 結 論…………………………………………………………245
8.1基本性質…………………………………………………………….245
8.2機械性質…………………………………………………………….246
8.3電化學性質………………………………………………………….246

參考文獻…………………………………………………………...…..248
1. C. C. Chawla, Composite Mater. Sci. Eng., (1975) 102.
2. W. Klement, R. H. Willens, P. Duwez, Nature, 187 (1960) 869.
3. H. W. Kui, A. L. Greer, D. Turnbull, Appl. Phys. Lett., 45 (1984) 615.
4. A. Inoue, Bulk Amorphous Alloys, 1999 Trans Tech Publication Ltd, Switzerland.
5. H. Kimura, T. Masumoto and D. G. Ast, Acta Metall., 35, (1987) 1757.
6. J. Schroers, K. Samwer, F. Seuecs and W. L. Johnson, J. Mater. Res., 15 (2000) 1617.
7. B. Weiss, J. Eckert, J. Metas. And Nanocry. Mater., 8 (2000) 129.
8. C. Qin, W. Zhang, H. Kimura and A. Inoue, JIM, 45 (2004) 2936.
9. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka , JIM, 42 (2001)1149.
10. C. Qin, K. Asami, T. Zhang, W. Zhang and A. Inoue, JIM, 44 (2003) 749.
11. C. Qin, K. Asami, T. Zhang, W. Zhang and A. Inoue, JIM, 44 (2003) 1042.
12. Y. C. Kim, D. H. Kim and J. C. Lee, JIM, 10 (2003) 2224.
13. C. L. Qin, W. Zhang, K. Asami, H. Kimura, X. M. Wang and A. Inoue, Acta Mater., 54 (2006) 3713.
14. W.N. Myung, L. Battezzati, M. Baricco, K. Aoki, A. Inoue and T. Masumoto, Mater. Sci. Eng., A179/180 (1994) 371.
15. X. H. Lin and W. L. Johnson, J. Appl. Phys.,78 (1995) 6514.
16. R. Nagaranjan, K. Aoki, and k. Chattopadhyay, Mater. Sci. Eng., A179/180 (1994) 198.
17. H. C. Yim, R. Busch and W. L. Johnson, J. Appl. Phys., 83 (1998) 7993.
18. C. Li, J. Saida, M. Kiminami and A. Inoue, J. Non-cryst. Solids., 261(2000) 108.
19. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta mater.,49 (2001) 2645.
20. A. Inoue, T. Zhang, K. Kurosaka and W. Zhang, JIM. 42 (2001) 1800.
21. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, JIM., 42 (2001) 1805.
22. T. Zhang, K. Kurosaka and A. Inoue, JIM., 42 (2001) 2042.
23. T. Zhang and A. Inoue, JIM., 43 (2002) 1367.
24. A. Inoue and W. Zhang, JIM. 43 (2002) 2921.
25. D. V. Louzguine, H. Kato and A. Inoue, Sci. and Tech. Adv. Mater., 4 (2003) 327.
26. D. V. Louzguine and A. Inoue, J. Non-cryst. Solids., 325 (2003) 187.
27. T. Yamamoto, C. Qin, T. Zhang, K. Asami and A. Inoue, JIM., 44 (2003) 1147.
28. W. Zhang and A. Inoue, JIM., 44 (2003) 2220.
29. W. Zhang and A. Inoue, JIM., 44 (2003) 2346.
30. Q.S. Zhang, H.F. Z.hang, Y.F. Deng, B.Z. Ding and Z.Q. Hu, Scripta Mater., 49 (2003) 273.
31. T. Zhang, A. Inoue and T. Masumoto, JIM., 32 (1991) 1005.
32. K. Nakamura and M. Nagumo, J. Non-cryst. Solids., 175(1994) 238.
33. D. Xu, G. Duan and W. L. Johnson, Phys. Rev. Lett., 92 (2004) 245504-1.
34. W. Zhang and A. Inoue, J. Mater. Res., 21 (2006) 234.
35. C. L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma and J. Xu, Scripta Mater., 54 (2006) 1403.
36. H. C. Yim, J. Schroers and W. L. Johnson, Appl. Phys. Lett., 80(2002) 1906.
37. W. Zhang, S. Ishihara and A. Inoue, JIM., 43 (2002) 1767.
38. 王建忠,“非晶質銅基複合材料之製備研究”,國立台灣海洋大學碩士論文(2003)
39. C. C. Wang, C. K. Lin, Y. L. Lin, J. S. Chen, R. R. Jen and P. Y. Lee, Mater. Sci. Forum, 475-479 (2005) 3443.
40. C. C. Wang, J. S. Chen, R. R. Jen and P. Y. Lee, J. Meta. and Nanocry. Mater., 24-25 (2005) 395.
41. H. Kato, K. Yubuta, D.V. Louzguine, A. Inoue, H.S. Kim, Scripta Mater., 51 (2004) 577.
42. H. Fu, H. Zhang, H. Wang, Q. Zhang and Z. Hu, Scripta Mater., 52 (2005) 669.
43. C. C. Hays, C. P. Kim and W. L. Johnson, Phys. Rev. Lett., 84 (2000) 2901.
44. D. V. Louzguine, H. Kato and A. Inoue, Appl. Phys. Lett., 84 (2004) 1088.
45. C. Qin, W. Zhang, H. Kimura and A. Inoue, JIM., 45 (2004) 2936.
46. Z. Bian, H. Kato and A. Inoue, JIM., 46 (2005) 798.
47. C. L. Qin, W. Zhang, K. Amiya, K. Asami and A. Inoue, Mater. Sci. Eng., A449/451 (2007) 230.
48. C. C. Koch, Nanostructured Materials Processing, Properties and Potential Applications, 2002 Noyes Publications –William Andrew Publishing Norwich, New York, U.S.A.
49. H. J. Fecht, Nanomaterials;Synthesis, Properties and Applications, (A. S. Edelstein and R.C. Cammarata,eds.),Institute of Physics Publ., Bristol and Philadelphisa (1966)
50. H. Gleiter, Prog. Mat. Sci., 33 (1989) 223
51. G. C. Hadjipanayis and R. W. Siegel, eds., Nanophase Materials, Kluwer Acad. Publ. (1994)
52. H. J. Fecht, E. Hellstem, Z. Fu and W. L. Johnson, Adv. Powder Metall., 1 (1989) 111.
53. C. C. Koch, O. B. Cavin, C. G. McKamey and J. O. Scarbrough, Appl. Phys. Lett., 43 (1983) 1017.
54. R. B. Schwarz, R. R. Petrich and C. K. Saw, J. Non-cryst. Solids, 76 (1985) 281.
55. E. Hellstern and L. Schultz, Appl. Phys. Lett., 48 (1986) 124.
56. H. J. Fecht and W. L. Johnson, Nature, 334(1988) 50.
57. P. H. Shingu, Mechanical Alloying, Mater. Sci. Forum, (1992) 88.
58. H. J. Fecht, Nature, 356(1992) 133.
59. H. J. Fecht, E. Hellstem, Z. Fu. and W. L. Johnson, Metall. Trans. A, 21 (1990) 2333.
60. J. Eckert, L. Schultz and K. Urban, Appl. Phys. Lett., 55 (1989) 117.
61. W. E. Kuhn, I. L. Friedman, W. Summers and A. Szegvari, Powder Metallurgy, ASM Metals Handbook, Metals Park, OH, 7 (1985) 56.
62. G. K. Williamson and W. H. Hall, Act. Mater., 1 (1953) 22.
63. C. N. J. Wagner and M. S. Boldrick, J. Mater. Sci. Eng., A133 (1991) 26.
64. C. Moelle, Ph.D. Thesis, Technical University, Berlin (1995)
65. E. O. Hall, Proc. Phys. Soc., London, 643 (1951) 747.
66. N. J. Petch, J. Iron Steel Inst., London, 173 (1953) 25.
67. M. A. Meyers and K. K. Chawla, Mechanical Metall., (1984) 494.
68. P. E. D. Morgan, Superplasticity in Ceramics, in Ultrafine-Grained Ceramics, Syracuse University Press, Syracuse (1968) 251.
69. P. G. Sanders, J. A. Eastman and J. R. Weertman, Acta Mater., 45 (1997) 4019.
70. T. R. Malow and C. C. Koch, Acta Mater., 46 (1998) 6459.
71. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nded., Chapman and Hall, London (1992) 113.
72. D. L. Johnson, Solid State Sintering Models, MRS, Plenum Press, NY (1980) 97.
73. J. E. Bonevics and L. D. Marks, J. Mater. Res., 7 (1992) 1489.
74. J. Rankin and B. W. Sheldon, Mater. Sci. Eng., A204 (1995) 48.
75. A. H. Carim, Microstructure in Nanocrystalline Zirconia Powders and Sintered Compacts, Kluwer Academic Publ., Netherlands, (1994) 283.
76. N. Guillou, L. C. Nistor, H. Fuess and H. Hahn, Nanostr. Mater., 8 (1997) 545.
77. D. L. Olynick, J. M. Gibson and R. S. Averbach, Appl. Phys. Lett., 68 (1996) 343.
78. Y. Champion and J. Bigot, Nanostr. Mater., 10 (1998) 1097.
79. H. Zhu and R. S. Averback, Phil. Mag. Lett., 73 (1996) 27.
80. R. J. Conder, C. B. Ponton and P. M. Marquis, Processing of Aluminal/Silicon Carbide Nanocomposites, The Institute of Materials, London (1993) 105.
81. P. Luo, T. G. Nieh, A. J. Schwartz and T. J. Lenk, Mat. Sci. Eng., A204 (1995) 59.
82. R. W. Cahn, Nature, 359 (1992) 591.
83. M. L. Trudeau, A. Tschope and J. Y. Ying, Surface and Interf. Analysis, 23 (1995) 219.
84. T. Rabe and R. Wasche, Nanostruct. Mater., 6 (1995) 357.
85. K. Uchino, E. Sadanaga and T. Hirose, J. Am. Ceram. Soc., 72 (1989) 1555.
86. G. Skandan, C. M. Foster, H. Frase, M. N. Ali, J. C. Parker and H. Hahn, Nanostr. Mater., 1 (1992) 313.
87. R. C. Garvie, J. Phys. Chem., 82(1978) 218.
88. W. Krauss and R. Birringer, Nanostr. Mater., 9 (1997) 109.
89. M. F. Yan and W. W. Rhodes, Mater. Sci. Eng., 61 (1983) 59.
90. H. Hahn, Nanostr. Mater., 2 (1993) 251.
91. G. Skandan, Nanostr. Mater., 5 (1995) 111.
92. M. I. Alymov, E. I. Maltina and Y. N. Stepanov, Nanostr. Mater., 4 (1992) 737.
93. A. Pechenik, G. J. Piermarini and S. C. Danforth, J. Am. Ceram. Soc., 75 (1992) 3283.
94. T. Yamamoto, C. Qin, T. Zhang, K. Asami and A. Inoue, JIM., 44 (2003) 1147.
95. A. Inoue, Acta Mater., 48 (2000) 279.
96. K. Asami, C. L. Qin, T. Zhang and A. Inoue, Mater. Sci. Eng., A 375-377 (2004) 235.
97. C. Qin, W. Zhang, H. Kimura, K. Asami and A. Inoue, JIM., 45 (2004) 1958.
98. D. A. Jones, PRINCIPLES AND PREVENTION OF CORROSION, Maxwell Macmillan International Editions (1991)
99. C. Qin, W. Zhang, K. Asami, N. Ohtsu and A. Inoue, Acta Mater., 53 (2005) 3903.
100. L. Liu and B. Liu, Electrochimica Acta, 51 (2006) 3724.
101. B. Liu and L. Liu, Mater. Sci. Eng., A 415 (2006) 286.
102. B. Liu and L. Liu, Inter., 15 (2007) 679.
103. D. Zander, B. Heisterkamp and I. Gallino, J Alloys and Comp., 434-435 (2007) 234.
104. J. A. Franklin, Atlas of Electrochemical Equilibria in Aqueous Solutions, National Association of Corrosion Engineers (NACE), Houston, USA, 1974
105. M. D. Bermudez, F. J. Carrion, G. M. Nicolas and R. Lopez, Wear, 258 (2005) 693.
106. M. Belli, A. Scafati, A. Bianconi, S. Mobilio, L. Palladino, A. Reale, and E. Burattini, Solid State Commun., 35 (1980), 355.
107. 柯賢文,腐蝕及其防制,全華科技圖書股份有限公司 (1992)
108. C. K. Lin, C. K. Wang, H. C. Lin and P. Y. Lee, J. Metastab. and Nanocryst. Mater., 24-25 (2005) 419.
109. 洪旭昇,Al2O3-NiAl複合材料粉末之in-situ製程開發研究,國立台灣海洋大學碩士論文 (1998)
110. T.B. Massalski, Binary Alloy Phase Diagrams Second Edition Volume 2, The Materials Information Society
111. T.B. Massalski, Binary Alloy Phase Diagrams Second Edition Volume 3, The Materials Information Society
112. O. N. Senkov, D. B. Miracle, Mater. Res. Bull., 36 (2001) 2183.
113. M. Sherif El-Eskandarany and A. Inoue, J. Mater. Res., 21 (2006) 976.
114. J. S. Benjamin, Scientific American, 234 (1976) 40.
115. Z. Bian, H. Kato, C. Oin, W. Zhang and A. Inoue, Acta Mater., 53 (2005) 2037.
116. J. Z. Jiang, J. S. Olsen, L. Gerward, S. Abdali, J. Eckert, N. Schlorke-de Boer, L. Schultz, J. Truckenbrodt and P. X. Shi, J. Appl. Phys.,87 (2000) 2664.
117. W. H. Wang, K. W. He, D. Q. Zhao, Y. S. Yao and M. He, Appl. Phys. Lett., 75 (1999) 2770.
118. Z. Y. Shen, G. Y. Chen, Y. Zhang and X. J. Yin, Phys. Rev. B39 (1989) 2714.
119. J. Z. Jiang and B. Yang, J. Mater. Res., 18 (2003) 895.
120. J. Z. Jiang, T. J. Zhou, H. Rasmussen, U. Kuhn, J. Eckert and C. Lathe, Appl. Phys. Lett., 77 (2000) 3553.
121. J. Eckert, A. Reger-Leonhard, B. Weib and M. Heilmaier, Advanced Eng. Mater., 3 (2001) 41.
122. J. Z. Jiang, K. Saksl, N. Nishiyama and A. Inoue, J. Appl. Phys.,92 (2002) 3651.
123. J. Z. Jiang, L. Gerward and Y. S. Xu, Appl. Phys. Lett., 81 (2002) 4347.
124. F. Zhou, X. H. Zhang and K. Lu, J. Mater. Res., 13 (1998) 784.
125. Ll. Casas, A. Roig, E. Rodriguez, E. Molins, J. Tejada and J. Sort, J. Non-cryst. Solids., 285 (2001) 37.
126. J. Z. Jiang, H. Kato, T. Ohsuna, J. Saida, A. Inoue, K. Saksl, H. Franz and K. Stahl, Appl. Phys. Lett., 83 (2003) 3299.
127. R. Arroyave, T. W. Eagar and L. Kaufman, J Alloys and Comp., 351 (2003) 158.
128. A Revesz, A. Concustell, L. K. Varga, S. Surinach and M. D. Baro, Mater. Sci. Eng., A 375-377 (2004) 776.
129. A. Concustell, M. Zielinska, A. Revesz, L. K. Varga, S. Surinach and M. D. Baro, Inter., 12 (2004) 1063.
130. W. H. Wang, J. J. Lewandowski and A. L. Greer, J. Mater. Res., 20 (2005) 2307.
131. C. Y. Tam and C. H. Shek, J. Mater. Res., 21 (2006) 851.
132. M. Kasai, E. Matsubara, J. Saida, M. Nakayama, K. Uematsu, T. Zhang and A. Inoue, Mater. Sci. Eng., A375/377 (2004) 744.
133. J. Saida, T. Qsuna, M. Ohnuma, E. Matsubara and A. Inoue, Sci. and Tech. Adv. Mater., 4(2003) 311.
134. D. V. Louzguine and A. Inoue, J. Mater. Res., 17 (2002) 2112.
135. A. Inoue, W. Zhang and J. Saida, JIM., 45 (2004) 1153.
136. Q. Zhang, H. Zhang, Z. Zhu and Z. Hu, JIM., 46 (2005) 730.
137. Z. X. Wang, D. Q. Zhao, M. X. Pan, P. Wen, W. H. Wang, T. Okada and W. Utsumi, Phys. Rev. B69 (2004) 092202-1.
138. J. C. Rawers and R. D. Wilson, J. Mater. Sci., 25 (1990) 1392.
139. D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu and E. Ma, Appl. Phys. Lett., 84 (2004) 4029.
140. K. Uematsu, Master Thesis, Tohoku University, 2002
141. J. Saida, T. Osuna and A. Inoue, J. Mater. Res., 18 (2003) 2013.
142. T. P. Weihs, T. W. Barbee and M. A. Wall, Acta Mater., 45 (1997) 2307.
143. W. H. Wang, Y. X. Zhuang, M. X. Pan and Y. S. Yao, J. Appl. Phys.,78(1995) 6514.
144. W. H. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan and Y. S. Yao, Phys. Rev. B., 62 (2000)11 292.
145. P. Yu, S. Venkataraman, J. Das, L. Zhang, W. Zhang, J. Eckert, J. Mater. Res., 22 (2007) 1168.
146. P. Yu, K. B. Kim, J. Das, F. Baier, W. Xu and J. Eckert, Scripta Mater., 54 (2006) 1445.
147. P. Yu, L. C. Zhang, W. Y. Zhang, J. Das, K. B. Kim and J. Eckert, Mater. Sci. Eng., A444 (2007) 206.
148. A. Inoue, T. Zhang, S. Ishihara, J. Saida and M. Matsushita, Scripta Mater., 44 (2001) 1615.
149. J. Eckert, U. Kuhn, N. Mattern, A. Reger-Leonhard, M. Heilmair, Scripta Mater., 44 (2001) 1587.
150. U. Ramamurty, N. Nagendra and Y. Li, J. Metastruct. and Nanostruct. Mater., 10 (2001) 61.
151. Y. H. Kim, K. Higara, A. Inoue, T. Masumoto and H. H. Jo, JIM., 35 (1994) 293.
152. R.D. Conner, H. C. Yim and W.L. Johnson, J. Mater. Res. 14 (1999) 3292.
153. E. Rabinowitz, L. A. Dunn and P. G. Russel, Wear 4 (1961) 345.
154. C. Y. Tam and C. H. Shek, Mater. Sci. Eng., A384 (2004) 138.
155. C. Y. Tam and C. H. Shek, J. Non-cryst. Solids., 347 (2004) 268.
156. A. L. Greer, K. L. Rutherford and I. M. Hutchings, Int. Mater. Rev. 47 (2002) 87.
157. C. J. Gillbert, R. O. Ritchie and W. L. Johnson, Appl. Phys. Lett. 71 (1997) 476.
158. J. Bhatt, S. Kumar, C. Dong and B. S. Murty, Mater. Sci. Eng., A458 (2007) 290.
159. J. F. Archard, J. Appl. Phys.,24 (1953) 981.
160. T. Gloriant, J. Non-cryst. Solids., 316 (2003) 96.
161. A. Concustell, G. Alcala, S. Mato, T. G. Woodcock, A. Gebert, J. Eckert and M. D. Baro, Inter. 13 (2005) 1214.
162. J. G. Wang, BW. Choi, T. G. Nieh and C. T. Liu, J. Mater. Res. 15 (2000) 913.
163. G. E. Abrosimova, A. S. Aronin, Y. V. Kirjanov, T. Gloriant and A. L. Greer, Nanostruc. Mater. 12 (1999) 617.
164. T. Gloriant, A. L. Greer, Nanostruc. Mater. 10 (1998) 389.
165. L.Q. Xing, J. Eckert and L. Schultz, Nanostruc. Mater. 12 (1999) 503.
166. M. E. Siegrist, E. D. Amstad and J. F. Loffler, Inter. 15 (2007) 1228.
167. E. Fleury, S. M. Lee, H. S. Ahn, W. T. Kim and D. H. Kim, Mater. Sci. Eng., A375-377 (2004) 276.
168. U. Koster, D. Zander, Triwikantoro, A. Rudiger and L. Jastrow, Scripta Mater., 44 (2001) 1649.
169. K. Mondal, B. S. Murty and U. K. Chatterjee, Corrosion Sci., 48 (2006) 2212.
170. S. Pang, C-H Shek, C. Ma, A. Inoue and T. Zhang, Mater. Sci. Eng., A449-451 (2007) 557.
171. C. L. Qin, J. J. Oak, N. Ohtsu, K. Asami and A. Inoue, Act. Mater., 55 (2007) 2057.
172. Y. Zhang, Y. Q. Lei, L. X. Chen, J. Yuan, Z. H. Zhang and Q. D. Wang, J. Alloys and Comp., 337 (2002) 296.
173. F. X. Qin, G. T. Bae, Z. H. Dan, H. Lee and N. J. Kim, Mater. Sci. Eng., A449-451 (2007) 636.
174. J. Jayaraj, D. J. Sordelet, D. H. Kim, Y. C. Kim and E. Fleury, Corrosion Sci., 48 (2006) 950.
175. C. Monticelli, A. Frignani and F. Zucchi, Corrosion Sci., 46 (2004) 1225.
176. H. H. Uhlig, R. Winston Revie, CORROSION AND CORROSION CONTROL, An Introduction to Corrosion Science and Engineering Third Edition, A Wiley-Interscience Publication (1984).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔