(3.238.96.184) 您好!臺灣時間:2021/05/15 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許欽宇
研究生(外文):Chin-Yu Hsu
論文名稱:提升鎂基合金儲氫能力之多元醇法處理
論文名稱(外文):Improving the hydrogen absorption abilities of magnesium based alloy by polyol process treatment
指導教授:王星豪邱善得邱善得引用關係
指導教授(外文):Shin-Hoa WangSan-Der Chyou
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:75
中文關鍵詞:高能球磨氫儲存熔煉鎂基合金催化劑
外文關鍵詞:high-energy ball millhydrogen storagemeltmagnesium based alloyCatalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
本論文著重在增進金屬儲氫合金的儲氫性質和其性能,並比較其優劣。我們利用高能機械球磨法,和旋轉熔煉爐(RCM)均在氬氣氣氛下製備鎂鎳合金,催化劑鈀則分別利用高能機械球磨法和多元醇法添加,來改善其儲氫性質。從XRD分析中得知,使用高能球磨法與熔煉法均有Mg2Ni的峰質產生,從結果中可發現,Mg2Ni和催化劑鈀均有促進鎂基儲氫合金其吸氫動能。利用熱力學分析氫化物,可得知因不同配比而有不同的熵變化。另一種催化劑鈀的添加方式是以Polyol process 讓催化劑鈀附著在經球磨製備的鎂鎳合金粉末表面上,從吸氫動能圖中,可發現均能有效促進吸氫速率。
Our experiment was focus on metal hydrogen storage material to improve hydrogen absorption kinetic. Mg99Ni1-Xwt% Pd (X=0, 0.2, 1) and Mg90Ni10-X wt% Pd (X=0, 0.2, 1) alloys were melted and ball milled under an argon atmosphere. XRD phase analysis reveals Mg2Ni peak in both the melted and ball-milled alloys. The Mg2Ni and Pd have both catalytic and synthetic effects on improving the hydrogen sorption kinetics of the alloy. The results of thermodynamic analysis of magnesium hydride correspond to the values of differential scanning calorimetry measurements.
Ball milled Mg99Ni1-Xwt% Pd (X=0, 0.2, 1) and Mg90Ni10-Xwt% Pd (X=0, 0.2, 1) were doped with Pd nanoparticles via a polyol process. Such a process allows a great amount of Pd particles and cluster mounted on the Mg-based alloy powder surface. The hydrogen absorption rate of Mg-based alloy have been improved greatly.
中文摘要 ......i
Abstract .....ii
誌謝 …...iii
Table of Contents………………………………………………………...iv
Table Caption List……………………………………………………….vi
Figure Caption List..............................................................................vii
Chapter 1
Introduction 1
1.1 The hydrogen economy 1
1.2 Material of hydrogen storage 2

Chapter 2
Literature review 3
2.1 Storage hydrogen summary 3
2.2 Physics and chemistry Metal hydrides 4
2.3 Thermodynamics characteristic 5
2.4 Hydrogen absorption 7
2.5 Magnesium-based hydrides 9
2.6 Effect of catalysts deposition 10
2.7 Mg-based alloy fabricate by ball milled and melted 14
2.8 Polyol process application in preparation nanoparticle 15

Chapter 3
Experimental Procedures 24
3.1 Experiment procedure 24
3.2 The mechanical alloy and rotation-cylinder method 25
3.3 Doped Pd by polyol process 26
3.4 Characterization of alloy powders 30
3.4.1 X-ray Diffraction analysis 30
3.4.2 SEM observation 30
3.4.3 UV-visible 30
3.5 Pressure-composition-isotherms (PCI) test 31

Chapter 4
Results and Discussion 35
4.1 Enhancement hydrogen sorption kinetic of Mg-based alloys by Pd-coating 35
4.1.1 Phase analysis and particle morphology 35
4.1.2 Hydrogen absorption behavior 37
4.1.3 Pressure-Composition isotherm (PCI) result 40
4.1.4 Calculation of thermodynamics 40
4.2 Hydrogen sorption kinetic enhancement of Mg-based alloys by polyol process Pd 42
4.2.1 Characterization of Pd-doped magnesium alloy powder 42
4.2.2 Hydrogen absorption kinetic of palladium-doped Magnesium based alloy 43
Chapter 5
Conclusions 72
References 73
[1] F. A. Lews: The Palladium Hydrogen system, Acadeemic Press, London, 1967.
[2] Nick E. Tran, M. Ashraf Imam, C. R. Feng, J. Alloys Comp. 359 (2003) 225-229.
[3] Materials for hydrogen storage by Andreas Zuttel.
[4] Lennard-Jones, J. E., Trans. Faraday Soc. (1932) 28, 333.
[5] Fukai, Y., Z. Phys. Chem. (1989) 164, 165.
[6] Switendick, A. C., Z. Phys. Chem. N. F. (1979) 117, 89.
[7] Westlake, D.J., J. Less-Common Met. (1983) 91, 275.
[8] Rittmeyer, P., and Wietelmann, U., Hydrides. In: Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed., Bohnet, M, et al, Wiley-VCH, (1996), A13, 199.
[9] M. Martin, C. Gommel, C. Borkbart, E. Fromm, J. Alloys Comp. 238 (1996) 193-201.
[10] R. Schulz, S. Boily, L. Zaluski, A. Zaluska, P. Tessier, J.O. Stro‥m-Olsen, Innovations in Metallic Materials (1995) 529.
[11] R. Schulz, J. Huot, G. Liang, S. Boily, G. Lalande, M.C. Denis, J.P. Dodelet, Mater. Sci. Eng. A267 (1999) 240–245.
[12] A. Zaluska, L. Zaluski, J.O. Stro‥m-Olsen, J. Alloy. Compd. 288 (1999) 217–225.
[13] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.
[14] G. Liang, J. Huot, S. Boily, R. Schulz, J. Alloy. Compd. 305 (2000) 239–245.
[15] J.J. Reilly, R.H. Wiswall Jr., Inorg. Chem. 7 (1968) 2254.
[16] G. Barkhordarian, T. Klassen, R. Bormann. International patent application, Publ. No. WO2006063627.
[17] J.J. Vajo, S.L. Skeith, F. Mertens, J. Phys. Chem. B 109 (2005) 3719–3722.
[18] G. Barkhordarian, T. Klassen, M. Dornheim, R. Bormann J. Alloy. Compd. (2007) in press.
[19] Xiaochun Xu, Chunshan Song, Applied Catalysis A: General 300 (2006) 130-138.
[20] L.Zaluski, A. Zaluska, J.O. Str?m-Olsen, J. Alloys Compd. 253-254 (1997) 70.
[21] L.Zaluski, A. Zaluska, J.O. Str?m-Olsen, J. Alloys Compd. 217 (1995) 295.
[22] B. Vighholm, J. Kjoller, B. Larsen, A. S. Pedersen, J. Less Common Met. 89 (1983) 135.
[23] L. Zaluski, A. Zalska, J.O. Strom-Olsen, J. Alloys Compd. 217 (1995) 245-249.
[24] T. Ma, Y. Hatano, T. Abe, K. Watanabe, J. Alloys Compd. 372 (2004) 251-258.
[25] X. Shan, J. H. Payer, J. S. Wainright, J. Alloys Compd. 430 (2007) 262-268.
[26] C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.
[27] S.K. Kim, Y.J. Kim, Metals and Materails 6 (2000) 359.
[28] K.J. Gross, D. Chartouni, E. Leroy, A. Zuttel, L. Schlapbach, J. Alloys Compd. 269 (1998) 259.
[29] O. Gutfleisch, N.S.-d. Boer, M.H. N. Ismail, J.S. Walton, I.R. A. Harris, A.S. Pratt, A. Zuttel, J. Alloys Compd. 356-357 (2003) 598.
[30] F. Bonet, V. Delmas, S. Grugenon, R.H. Urbina, P.-Y. Silvert, K. Tekaia-Elhsissen, Nanostruct. Mater. 11 (1999) 1277.
[31] L. Zaluski, A. Zaluska, P. Tessier, J.O. Str?m-Olsen, R. Schulz, J. Alloys Compd. 217 (1995) 295.
[32] R. Janot, A. Rougier, L. Aymard, C. Lenain, R. Herrera-Urbina, G.A. Nazri, J.M. Tarascon, J. Alloys Compd. 356-357 (2003) 438.
[33] L.K. Kurihara, G.M. Chow and P.E. Schoen, NanaShuchued Materials, Vol. 5, No. 6, (1995) 607-613
[34] F. Bonet, V. Delmas, S. Grugeon, R.H. Urbina, P.-Y. Silvert, K. Tekaia-Elhsissen, Nanostruct. Mater. 11 (1999) 1277.
[35] 張仕欣, 王崇人, CHEMISTRY, 56 (1998) 209-222
[36] Z. Li, X. Liu, L. Jiang, S. Wang, Int J Hydrogen energy 32 (2007) 1869-1874.
[37] X. Xu, C. Song, Appl Catal A Gen 300 (2006) 130-138.
[38] A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, J. Power Sources 118 (2003) 1-7
[39] J.J. Reilly, Proc. Int. Sympp. On Hydride For Energy Storage, 301, (1978).
[40] H. Uchida, Int. J. Hydrogen energy 24 (1999) 861-869.
[41] Z. Li, X. Liu, L. Jiang, S. Wang, Int. J. Hydrogen Energy 32 (2007) 1869-1874.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top