跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許淑貞
研究生(外文):Shu-Chen Hsu
論文名稱:集水區地表逕流與地表下逕流演算模式適用性之探討
論文名稱(外文):The applicability investigation of watershed surface and subsurface rainfall-runoff simulation model
指導教授:李光敦李光敦引用關係
指導教授(外文):Kwan Tun Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:160
中文關鍵詞:地形指數模式動態地形指數模式零慣性波-動態地形指數模式數值高程模式
外文關鍵詞:TOPMODELdynamic TOPMODELnoninertia wave - dynamic TOPMODELdigital elevation model
相關次數:
  • 被引用被引用:3
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
集水區降雨逕流關係,是由集水區地文特性與水文特性所主控。因此水文模式若能同時考慮集水區地文與水文特性,再配合適當的物理機制連貫整個逕流過程,並挑選適當的分析時間尺度,應能得到良好的模擬結果。本研究首先採用地形指數模式,以進行研究集水區之水文分析;由於該模式假設飽和含水層為連續且穩定,無法適用於逕流為遽變之情況,因此研究中另外利用數值格點傳輸機制加以修正模式架構,建立動態地形指數模式與零慣性波-動態地形指數模式。
研究中為瞭解地形指數模式、動態地形指數模式以及零慣性波-動態地形指數模式於逕流模擬之適用性,選用台灣地區淡水河流域及美國密西西比河流域Goodwin試驗集水區等10個集水區,進行模式參數檢定及長、短時距之逕流模擬。研究結果發現,地形指數模式對於日流量模擬,可適切模擬退水歷線。而於動態地形指數模式中,中間流是以地表逕流方式表現,且模式中無法描述河川之貯蓄效應,因此造成退水段之模擬不佳。而由小時流量模擬結果可知,地形指數模式、動態地形指數模式及零慣性波-動態地形指數模式對於以地表逕流為主之集水區,皆可得到良好的模擬結果。但對於中間流比例較高之集水區,地形指數模式可藉由調整參數,以符合洪峰流量之模擬;但於動態地形指數與零慣性波-動態地形指數模式中,即使調整模式參數亦無法適切模擬洪峰流量。
The rainfall-runoff relationship in a watershed is dominated by watershed geomorphologic and hydrologic characteristics. It is promising to obtain good runoff simulating by using a runoff model if the model structure can consider the geomorphologic and hydrologic characteristics and an adequate simulating time scale is adopted. In this study, the TOPMODEL was applied for watershed runoff simulations. Since the model assumed the saturated stratum being in a successive steady state, which is inadequate to be applied to a transit hydrologic condition, a dynamic TOPMODEL and a noninertia wave-dynamic TOPMODEL, which were based on a grid-computational technique, were also developed for hydrologic analysis.
Hydrologic records from ten watersheds, in northern Taiwan and in the Goodwin experimental watersheds of America, were adopted to investigate the adequateness of the models for short- and long-term watershed runoff simulations. The results show that the TOPMODEL could provide good simulations for daily flow, but poor simulated results were obtained by using the dynamic TOPMODEL especially in recession limb of the hydrographs. It was because that the interflow was simulated by using a mean surface-runoff velocity and it could not simulate channel storage effects. In performing the hourly runoff simulations, the TOPMODEL, dynamic TOPMODEL, and noninertia wave-dynamic TOPMODEL could provide good simulation results if the watershed runoff was dominated by surface runoff mechanism. For watersheds with a great deal of interflow, the runoff peak could be captured by using the TOPMODEL if the model parameters could be carefully calibrated. Nevertheless, the runoff peak could not be well simulated by using the dynamic TOPMODEL and the noninertia wave-dynamic TOPMODEL.
目錄
摘要 i
英文摘要 ii
目錄 iii
表錄 v
圖錄 vi
第一章 導論 1
1.1研究目的 1
1.2前人研究 2
1.2.1 地形指數模式之相關研究 2
1.2.2 零慣性波逕流演算之相關研究 7
1.2.3 數值高程模式之相關研究 8
1.3研究方法 11
第二章 地形指數模式 13
2.1 模式架構 13
2.2 地表逕流與地表下逕流計算流程 18
2.3 勢能蒸發散量估計 20
2.4 乾季與濕季模式銜接處理 21
第三章 動態地形指數模式與零慣性波-動態地形指數模式 24
3.1 動態地形指數模式 24
3.2 零慣性波-動態地形指數模式 27
3.2.1 零慣性波逕流模擬 28
3.2.2 有限差分數值方法 30
3.2.3 地表逕流與地表下逕流模式之演算銜接 35
第四章 模式應用與結果討論 37
4.1 研究集水區地文特性分析 37
4.1.1 利用數值高程模式進行集水區地文分析 37
4.1.2 研究集水區概述 40
4.1.3 集水區地形指數值推求 41
4.2 模式驗證與參數變異討論 42
4.2.1 日流量模擬結果 42
4.2.2 颱洪流量模擬結果 47
4.2.3 參數變異性 52
4.3 數值試驗 53
4.4 結果與討論 55
第五章 結論與建議 57
5.1 結論 57
5.2 建議 58
參考文獻 59
李光敦,江申 (1997). “面積門檻值對集水區地文參數與水文模擬之影響,” 中華水土保持學報, 28(1), 21-32.
李光敦,江申,施匯銘 (1998). “利用數值高程資料進行集水區逕流模擬(一),” 農委會專題研究計畫成果報告,87科技-1.7-林-01(3-8)號。
李光敦,吳英民,鄭凱鴻 (2000). “定率性日流量模式之建立,” 農委會專題研究計畫成果報告, 89科技-1.5-林-62(3-9)。
李光敦,施匯銘,吳英民,楊銘賢 (1999a). “利用數值高程資料進行集水區逕流模擬(二),” 農委會專題研究計畫成果報告,88科技-1.7-林-01(3-8)號。
李光敦,俞維昇,楊銘賢,施匯銘 (1999b). “瑞伯颱風與芭比絲颱風汐止地區洪災分析報告,” 國立臺灣海洋大學河海工程研究所研究報告,臺灣士林地方法院檢察署委託。
李光敦,洪夢秋,林立峰,許淑貞 (2005). “乾旱期間水庫集水區基流量分析(二),” 國科會專題研究計畫成果報告,NSC93-2625-Z-019-002。
李光敦,林立峰 (2006). “數值高程資料格網解析度對地文因子推求與集水區邊界擷取之影響,” 台灣水利,54(1),6-17。
林立峰,「數值高程資料解析度對地文因子與逕流模擬之影響」,國立台灣海洋大學,碩士論文,民國94年。
洪夢秋,「地形指數模式應用於長短期距之逕流模擬」,國立台灣海洋大學,碩士論文,民國94年。

Band, L. E. (1986). “Topographic partition of watershed with digital elevation models,” Water Resour. Res., 22(1), 15-24.
Ben-Asher, J. and Humborg, G. (1992). “A partial contributing area model for linking rainfall simulation data with hydrographs of a small arid watershed,” Water Resour. Res., 28(8), 2041-2047.
Barling, R. D. (1994). “A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content,” Water Resour. Res., 30(4), 1029-1044.
Betson, R. P. (1964). “What is watershed runoff ?,” J. Geophys. Res., 69(8), 1541-1552.
Beven, K. J. (1986a). “Hillslope runoff processes and flood frequency characteristics,” in Adrahams, A. D. (ed.), Hillslope Processes, 187-202, Allen and Unwin, Boston.
Beven, K. J. (1986b). “Runoff production and flood frequency in catchments of order n: an alternative approach,” in Gupta, V. K., Rodriguez-Iturbe, I. and Wood, E. F. (eds.), Scale Problems in Hydrology, Reidel, Dordrecht, 107-131.
Beven, K. J. and Kirkby, M. J. (1979). “A physically based variable contributing area model of basin hydrology,” Hydrol. Sci. Bull., 24(1), 43-69.
Beven, K. J. and Wood, E. F. (1983). “Catchment geomorphology and the dynamics of runoff contributing areas,” J. Hydrol., 65, 139-158.
Beven, K. J., Lamb, R., Quinn, P.F., Romanowicz, R. and Freer J. (1995). “TOPMODEL,” in Singh, V. P. (ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Colorado, 627-668.
Beven, K. and Freer J. (2001). “A dynamic TOPMODEL,” Hydrol. Process., 15, 1993-2011.
Brasington, J. and Richard, K. (1998). “Interactions between model predictions, parameters and DTM scales for TOPMODEL,” Computers & Geosciences, 24(4), 299-314.
Chow, V. T, Maidment, D. R. and Mays, L. W. (1988). Applied Hydrology, McGraw-Hill Book Co., Chapter 5, 131.
Collins, S. H. and Moon, G. C. (1981). “Allgorithms for dense digital terrain models, ” Photogram. Eng. and Remote Sensing, 47, 71-76.
Douglas, D. H., (1986). “Experiments to locate ridges and channels to create a new type of digital elevation model,” Cartographica, 23( 4), 29-61.
Dubreuil, P. L. (1985). “Review of field observations of runoff generation in the tropics,” J. Hydrol., 80, 237-264.
Dubreuil, P. L. (1986). “Review of relationships between geophysical factors and hydrological characteristics in the tropics,” J. Hydrol., 87, 201-222.
Dunne, T. (1983). “Relation of field studies and modeling in the prediction of storm runoff,” J. Hydrol., 65, 25-48.
Dunne, T. and Black, R. D. (1970). “Partial area contributions to storm runoff in small New English watershed.” Water Resour. Res., 6(5), 1296-1311.
Eagleson, P. S. (1972). “Dynamics of Flood Frequency,” Water Resour. Res., 8(4), 878-898.
Endreny, T. A. and Wood, E. F. (2001). “Representing elevation uncertainty in runoff modeling and flowpath mapping,” Hydrol. Process., 15, 2223-2236.
Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F. and Steenhuis, S. (1999). “A GIS-based variable source area hydrology model,” Hydrol. Process., 13, 805-822.
Gandolfi, C. and Bischetti, G. B. (1997). “Influence of the drainage network identification method on geomorphological properties and hydrological response,” Hydrol. Process., 11, 353-375.
Granger R.J. (1997). “Comparison of surface and satellite-Derived estimates of evapotranspiration using a feedback algorithm. In: Kite, G. W., Pietroniro, A., Pultz, T. J. (Eds.) Application of Remote Sensing in Hydrology,” Proceedings of the third international workshop, NHRI Symposium, No. 17, October, 1996; NASA, Goddard Space Flight Center, Greenbelt, MD, NHRI, pp. 71-81.
Hawkins, R. H. (1979). “Runoff curve numbers from partial area watersheds,” J. Irrigation and Drainage Engrg., 105(IR4), 375-389.
Hebson, C. and Wood, E. F. (1982). “Derived flood frequencies from catchment geomorphology,” Water Resour. Res., 18(5), 1509-1518.
Helmlinger, K. R., Kumar, P. and Foufoula-Georgiou, E. (1993). “On the use of digital elevation model data for hortonian and fractal analysis of channel networks,” Water Resour. Res., 29(8), 2599-2613.
Hewlett, J. D. and Hibbert, A. R. (1967). “Factors affecting the response on small watersheds to precipitation in humid areas.” In: W. E. Sopper and H. W. Lull (Editors), Forest Hydrology, Oxford, 275-290.
Horritt M. S. and Bates, P. D. (2001). “Effects of spatial resolution on a raster based model of flood flow,” J. Hydrol., 253, 239-249.
Horton, R. E. (1933). “The role of infiltration in the hydrologic cycle,” Am. Geophys. Union, 14, 446-460.
James, B. and Keith R. (1998). “Interactions between model predictions, parameters and DTM scales for TOPMODEL,” Computers & Geosciences, 24(4), 299-314.
Jensen, M. E., Burman R. D. and Allen R. G. (1990). “Evapotranspiration and irrigation water requirement,” American Society of Civil Engineers, New York.
Jenson, S. K. and Domingue, J. O. (1988). “Extracting topographic structure from digital elevation data for geographic information system analysis,” Photogrametric Engineering and Remote Sensing, 54(11), 1593-1600.
Johnson, D. L. and Miller, A. C. (1997). “A spatially distributed Hydrologic model utilizing raster data structure,” Computers & Geosciences, 23(3), 267-272.
Jones, K. H. (1998). “A comparison of algorithms used to compute hill slope as a property of the DEM,” Computers & Geosciences, 24(4), 315-323.
Jones, R. (2002). “Algorithms for using a DEM for mapping catchment areas of stream sediment samples,” Computers & Geosciences, 28, 1051-1060.
Kirkby, M. J. (1975). Hydrograph modelling strategies. In: Processes in Physical and Human Geography, Peel R, Chisholm M, Haggett P (eds.), Heinemann: London, 69–90.
Ladouche, B., Probst, A., Viville, D., Idir, S., Baque, D., Loubet, M., Probst, J.-L. and Bariac, T. (2001). “Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France),” J. Hydrol., 242, 255-274.
Lamb, R., Beven, K. and Myrabø, S. (1998). “Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model,” Advances in Water Resources, 22(4), 305-317.
Lee, K. T. (1998). “Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study,” J. Am. Water Resour. Asso., 34(2).
Lee, K. T. and Yen, B. C. (1997). “Geomorphology and kinematic-wave based hydrograph derivation,” J. Hydr. Engrg., ASCE, 123(1),73-80.
Marc, V., Didon-Lescot, J.-F. and Michael, C. (2001). “Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge,” J. Hydrol., 247, 215-229.
Mark, D. M., (1983). “Automated detection of drainage networks for digital elevation models,” Proceedings of Autu-Carto 6, 2, Ottowa, Ontario, Canada, 288-298.
Martz, L. W. and Garbrecht, J. (1998). “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models,” Hydrol. Process. 12, 843-855.
Moore, I. D., Mackay, S. M., Wallbrink, P. J., Burch, G. J., and O’Loughlin, E. M. (1986). “Hydrologic characteristics and modelling of a small forested catchment in Southeastern New South Wales: prelogging condition,” J. Hydrol., 83, 307-335.
Moore, I. D., O’Loughlin, E. M., and Burch, G. J. (1988). “A contour based Topographic model for hydrological and ecological applications,” Earth Surface Processes and Landforms, 13, 305-320.
Musgrave, G. W. and Holton, H. N. (1964). “Infiltration,” V. T. Chow (ed), Handbook of Applied Hydrology, McGraw-Hill, New York.
O’Callaghan, J., and Mark, D. M. (1984). “The extraction of drainage networks from digital elevation data,” Comput. Vision Graphics Image Process., 28, 323-344.
Peucker, T. K., and Douglas, D. H. (1975). “Detection of surface-specific points by local parallel processing of discrete terrain elevation data,” Computer Graphics and Image Processing, 4, 375-387.
Peters, N. E., Freer J. and Beven K. (2003). “Modelling hydrologic reponses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL,” Hydrol. Process., 17, 345-362.
Priestly, C.H.B. and Taylor, R.J. (1972). “On the assessment of surface heat flux and evaporation using large-scale parameters,” Monthly Weather Rev., 100, 81-92.
Quinn, P. F. and Beven, K. J. (1993). “Spatial and temporal predictions of soil moisture dynamics, runoff, variable source areas and evapotranspiration for Plynlimon, mid-Wales,” Hydrol. Process., 7, 425-448.
Quinn, P. F., Beven, K. J., Chevallier, P. and Planchon, O. (1991). “The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models,” Hydrol. Process., 5, 59-79.
Quinn, P. F., Beven, K. J. and Lamb, R. (1995). “The ln(a/tanB) index: how to calculate it and how to use it within the TOPMODEL framwork,” Hydrol. Process., 9, 161-182.
Ragan, R. M. (1968). “An experimental investigation of partial area contributions,” In: Hydrological Aspects of the Utilization of Water, Volume II of the Proceedings of the General Assembly of Bern, 241-249. (IAHS publication No.76)
Saulnier, G., Obled, C. and Beven, K. (1997). “Analytical compensation between DTM grid resolution and effective values of saturated hydraulic conductivity within the TOPMODEL framework,” Hydrol. Process., 11, 1331-1346.
Seibert, J., Bishop, K. H. and Nyberg L. (1997). “A test of TOPMODEL’s ability to predict spatially distributed groundwater levels,” Hydrol. Process., 11, 1131-1144.
Shaman, J., Stieglitz, M., Engel, V., Koster, R. and Stark C. (2002). “Representation of subsurface storm flow and a more responsive water table in a TOPMODEL-based hydrology model,” Water Resour. Res., 38(8), 31.
Tarboton, D. G. (1997). “A new method for the determination of flow directions and upslope areas in grid digital elevation models,” Water Resour. Res., 33(2), 309-319.
Troch, P. A., De Troch, F. P. and Brutsaert, W. (1993). “Effective water table depth to describe initial conditions prior to storm rainfall in humid regions,” Water Resour. Res., 29(2), 427-434.
Turcotte, R., Fortin, J.-P., Rousseau, A. N., Massicotte, S. and Villeneuve, J. -P. (2001). “Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network,” J. Hydrol., 240, 225-242.
van de Griend, A. A. and Engman, E. T. (1985). “Partial area hydrology and remote sensing,” J. Hydrol., 81, 211-251.
van der Tak, L. D. and Bras, R. L. (1990). “Incorporating hillslope effects into the geomorphologic instantaneous unit hydrology,” Water Resour. Res., 26(10), 2393-2400.
Wolock, D. M., Hornberger G. M., Beven K. J., and Campbell W. G. (1989). “The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States,” Water Resour. Res., 25, 829-837.
Wolock, D. M. and McCabe Jr., G. J. (1995). “Comparision of single and multiple flow direction algorithms for computing Topographic Parameters in TOPMODEL,” Water Resour. Res., 31(5), 1315-1324.
Wolock, D. M. and McCabe, G. J. (2000). “Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data,” Hydrol. Process., 14, 987-1002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top