李光敦,江申 (1997). “面積門檻值對集水區地文參數與水文模擬之影響,” 中華水土保持學報, 28(1), 21-32.李光敦,江申,施匯銘 (1998). “利用數值高程資料進行集水區逕流模擬(一),” 農委會專題研究計畫成果報告,87科技-1.7-林-01(3-8)號。
李光敦,吳英民,鄭凱鴻 (2000). “定率性日流量模式之建立,” 農委會專題研究計畫成果報告, 89科技-1.5-林-62(3-9)。
李光敦,施匯銘,吳英民,楊銘賢 (1999a). “利用數值高程資料進行集水區逕流模擬(二),” 農委會專題研究計畫成果報告,88科技-1.7-林-01(3-8)號。
李光敦,俞維昇,楊銘賢,施匯銘 (1999b). “瑞伯颱風與芭比絲颱風汐止地區洪災分析報告,” 國立臺灣海洋大學河海工程研究所研究報告,臺灣士林地方法院檢察署委託。
李光敦,洪夢秋,林立峰,許淑貞 (2005). “乾旱期間水庫集水區基流量分析(二),” 國科會專題研究計畫成果報告,NSC93-2625-Z-019-002。
李光敦,林立峰 (2006). “數值高程資料格網解析度對地文因子推求與集水區邊界擷取之影響,” 台灣水利,54(1),6-17。林立峰,「數值高程資料解析度對地文因子與逕流模擬之影響」,國立台灣海洋大學,碩士論文,民國94年。
洪夢秋,「地形指數模式應用於長短期距之逕流模擬」,國立台灣海洋大學,碩士論文,民國94年。Band, L. E. (1986). “Topographic partition of watershed with digital elevation models,” Water Resour. Res., 22(1), 15-24.
Ben-Asher, J. and Humborg, G. (1992). “A partial contributing area model for linking rainfall simulation data with hydrographs of a small arid watershed,” Water Resour. Res., 28(8), 2041-2047.
Barling, R. D. (1994). “A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content,” Water Resour. Res., 30(4), 1029-1044.
Betson, R. P. (1964). “What is watershed runoff ?,” J. Geophys. Res., 69(8), 1541-1552.
Beven, K. J. (1986a). “Hillslope runoff processes and flood frequency characteristics,” in Adrahams, A. D. (ed.), Hillslope Processes, 187-202, Allen and Unwin, Boston.
Beven, K. J. (1986b). “Runoff production and flood frequency in catchments of order n: an alternative approach,” in Gupta, V. K., Rodriguez-Iturbe, I. and Wood, E. F. (eds.), Scale Problems in Hydrology, Reidel, Dordrecht, 107-131.
Beven, K. J. and Kirkby, M. J. (1979). “A physically based variable contributing area model of basin hydrology,” Hydrol. Sci. Bull., 24(1), 43-69.
Beven, K. J. and Wood, E. F. (1983). “Catchment geomorphology and the dynamics of runoff contributing areas,” J. Hydrol., 65, 139-158.
Beven, K. J., Lamb, R., Quinn, P.F., Romanowicz, R. and Freer J. (1995). “TOPMODEL,” in Singh, V. P. (ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Colorado, 627-668.
Beven, K. and Freer J. (2001). “A dynamic TOPMODEL,” Hydrol. Process., 15, 1993-2011.
Brasington, J. and Richard, K. (1998). “Interactions between model predictions, parameters and DTM scales for TOPMODEL,” Computers & Geosciences, 24(4), 299-314.
Chow, V. T, Maidment, D. R. and Mays, L. W. (1988). Applied Hydrology, McGraw-Hill Book Co., Chapter 5, 131.
Collins, S. H. and Moon, G. C. (1981). “Allgorithms for dense digital terrain models, ” Photogram. Eng. and Remote Sensing, 47, 71-76.
Douglas, D. H., (1986). “Experiments to locate ridges and channels to create a new type of digital elevation model,” Cartographica, 23( 4), 29-61.
Dubreuil, P. L. (1985). “Review of field observations of runoff generation in the tropics,” J. Hydrol., 80, 237-264.
Dubreuil, P. L. (1986). “Review of relationships between geophysical factors and hydrological characteristics in the tropics,” J. Hydrol., 87, 201-222.
Dunne, T. (1983). “Relation of field studies and modeling in the prediction of storm runoff,” J. Hydrol., 65, 25-48.
Dunne, T. and Black, R. D. (1970). “Partial area contributions to storm runoff in small New English watershed.” Water Resour. Res., 6(5), 1296-1311.
Eagleson, P. S. (1972). “Dynamics of Flood Frequency,” Water Resour. Res., 8(4), 878-898.
Endreny, T. A. and Wood, E. F. (2001). “Representing elevation uncertainty in runoff modeling and flowpath mapping,” Hydrol. Process., 15, 2223-2236.
Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F. and Steenhuis, S. (1999). “A GIS-based variable source area hydrology model,” Hydrol. Process., 13, 805-822.
Gandolfi, C. and Bischetti, G. B. (1997). “Influence of the drainage network identification method on geomorphological properties and hydrological response,” Hydrol. Process., 11, 353-375.
Granger R.J. (1997). “Comparison of surface and satellite-Derived estimates of evapotranspiration using a feedback algorithm. In: Kite, G. W., Pietroniro, A., Pultz, T. J. (Eds.) Application of Remote Sensing in Hydrology,” Proceedings of the third international workshop, NHRI Symposium, No. 17, October, 1996; NASA, Goddard Space Flight Center, Greenbelt, MD, NHRI, pp. 71-81.
Hawkins, R. H. (1979). “Runoff curve numbers from partial area watersheds,” J. Irrigation and Drainage Engrg., 105(IR4), 375-389.
Hebson, C. and Wood, E. F. (1982). “Derived flood frequencies from catchment geomorphology,” Water Resour. Res., 18(5), 1509-1518.
Helmlinger, K. R., Kumar, P. and Foufoula-Georgiou, E. (1993). “On the use of digital elevation model data for hortonian and fractal analysis of channel networks,” Water Resour. Res., 29(8), 2599-2613.
Hewlett, J. D. and Hibbert, A. R. (1967). “Factors affecting the response on small watersheds to precipitation in humid areas.” In: W. E. Sopper and H. W. Lull (Editors), Forest Hydrology, Oxford, 275-290.
Horritt M. S. and Bates, P. D. (2001). “Effects of spatial resolution on a raster based model of flood flow,” J. Hydrol., 253, 239-249.
Horton, R. E. (1933). “The role of infiltration in the hydrologic cycle,” Am. Geophys. Union, 14, 446-460.
James, B. and Keith R. (1998). “Interactions between model predictions, parameters and DTM scales for TOPMODEL,” Computers & Geosciences, 24(4), 299-314.
Jensen, M. E., Burman R. D. and Allen R. G. (1990). “Evapotranspiration and irrigation water requirement,” American Society of Civil Engineers, New York.
Jenson, S. K. and Domingue, J. O. (1988). “Extracting topographic structure from digital elevation data for geographic information system analysis,” Photogrametric Engineering and Remote Sensing, 54(11), 1593-1600.
Johnson, D. L. and Miller, A. C. (1997). “A spatially distributed Hydrologic model utilizing raster data structure,” Computers & Geosciences, 23(3), 267-272.
Jones, K. H. (1998). “A comparison of algorithms used to compute hill slope as a property of the DEM,” Computers & Geosciences, 24(4), 315-323.
Jones, R. (2002). “Algorithms for using a DEM for mapping catchment areas of stream sediment samples,” Computers & Geosciences, 28, 1051-1060.
Kirkby, M. J. (1975). Hydrograph modelling strategies. In: Processes in Physical and Human Geography, Peel R, Chisholm M, Haggett P (eds.), Heinemann: London, 69–90.
Ladouche, B., Probst, A., Viville, D., Idir, S., Baque, D., Loubet, M., Probst, J.-L. and Bariac, T. (2001). “Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France),” J. Hydrol., 242, 255-274.
Lamb, R., Beven, K. and Myrabø, S. (1998). “Use of spatially distributed water table observations to constrain uncertainty in a rainfall-runoff model,” Advances in Water Resources, 22(4), 305-317.
Lee, K. T. (1998). “Generating design hydrographs by DEM assisted geomorphic runoff simulation: a case study,” J. Am. Water Resour. Asso., 34(2).
Lee, K. T. and Yen, B. C. (1997). “Geomorphology and kinematic-wave based hydrograph derivation,” J. Hydr. Engrg., ASCE, 123(1),73-80.
Marc, V., Didon-Lescot, J.-F. and Michael, C. (2001). “Investigation of the hydrological processes using chemical and isotopic tracers in a small Mediterranean forested catchment during autumn recharge,” J. Hydrol., 247, 215-229.
Mark, D. M., (1983). “Automated detection of drainage networks for digital elevation models,” Proceedings of Autu-Carto 6, 2, Ottowa, Ontario, Canada, 288-298.
Martz, L. W. and Garbrecht, J. (1998). “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models,” Hydrol. Process. 12, 843-855.
Moore, I. D., Mackay, S. M., Wallbrink, P. J., Burch, G. J., and O’Loughlin, E. M. (1986). “Hydrologic characteristics and modelling of a small forested catchment in Southeastern New South Wales: prelogging condition,” J. Hydrol., 83, 307-335.
Moore, I. D., O’Loughlin, E. M., and Burch, G. J. (1988). “A contour based Topographic model for hydrological and ecological applications,” Earth Surface Processes and Landforms, 13, 305-320.
Musgrave, G. W. and Holton, H. N. (1964). “Infiltration,” V. T. Chow (ed), Handbook of Applied Hydrology, McGraw-Hill, New York.
O’Callaghan, J., and Mark, D. M. (1984). “The extraction of drainage networks from digital elevation data,” Comput. Vision Graphics Image Process., 28, 323-344.
Peucker, T. K., and Douglas, D. H. (1975). “Detection of surface-specific points by local parallel processing of discrete terrain elevation data,” Computer Graphics and Image Processing, 4, 375-387.
Peters, N. E., Freer J. and Beven K. (2003). “Modelling hydrologic reponses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL,” Hydrol. Process., 17, 345-362.
Priestly, C.H.B. and Taylor, R.J. (1972). “On the assessment of surface heat flux and evaporation using large-scale parameters,” Monthly Weather Rev., 100, 81-92.
Quinn, P. F. and Beven, K. J. (1993). “Spatial and temporal predictions of soil moisture dynamics, runoff, variable source areas and evapotranspiration for Plynlimon, mid-Wales,” Hydrol. Process., 7, 425-448.
Quinn, P. F., Beven, K. J., Chevallier, P. and Planchon, O. (1991). “The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models,” Hydrol. Process., 5, 59-79.
Quinn, P. F., Beven, K. J. and Lamb, R. (1995). “The ln(a/tanB) index: how to calculate it and how to use it within the TOPMODEL framwork,” Hydrol. Process., 9, 161-182.
Ragan, R. M. (1968). “An experimental investigation of partial area contributions,” In: Hydrological Aspects of the Utilization of Water, Volume II of the Proceedings of the General Assembly of Bern, 241-249. (IAHS publication No.76)
Saulnier, G., Obled, C. and Beven, K. (1997). “Analytical compensation between DTM grid resolution and effective values of saturated hydraulic conductivity within the TOPMODEL framework,” Hydrol. Process., 11, 1331-1346.
Seibert, J., Bishop, K. H. and Nyberg L. (1997). “A test of TOPMODEL’s ability to predict spatially distributed groundwater levels,” Hydrol. Process., 11, 1131-1144.
Shaman, J., Stieglitz, M., Engel, V., Koster, R. and Stark C. (2002). “Representation of subsurface storm flow and a more responsive water table in a TOPMODEL-based hydrology model,” Water Resour. Res., 38(8), 31.
Tarboton, D. G. (1997). “A new method for the determination of flow directions and upslope areas in grid digital elevation models,” Water Resour. Res., 33(2), 309-319.
Troch, P. A., De Troch, F. P. and Brutsaert, W. (1993). “Effective water table depth to describe initial conditions prior to storm rainfall in humid regions,” Water Resour. Res., 29(2), 427-434.
Turcotte, R., Fortin, J.-P., Rousseau, A. N., Massicotte, S. and Villeneuve, J. -P. (2001). “Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network,” J. Hydrol., 240, 225-242.
van de Griend, A. A. and Engman, E. T. (1985). “Partial area hydrology and remote sensing,” J. Hydrol., 81, 211-251.
van der Tak, L. D. and Bras, R. L. (1990). “Incorporating hillslope effects into the geomorphologic instantaneous unit hydrology,” Water Resour. Res., 26(10), 2393-2400.
Wolock, D. M., Hornberger G. M., Beven K. J., and Campbell W. G. (1989). “The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States,” Water Resour. Res., 25, 829-837.
Wolock, D. M. and McCabe Jr., G. J. (1995). “Comparision of single and multiple flow direction algorithms for computing Topographic Parameters in TOPMODEL,” Water Resour. Res., 31(5), 1315-1324.
Wolock, D. M. and McCabe, G. J. (2000). “Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data,” Hydrol. Process., 14, 987-1002.