(34.226.234.102) 您好!臺灣時間:2021/05/12 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李俊鋼
研究生(外文):Jyun Gang Li
論文名稱:添加鋼纖維對鋼筋腐蝕量測訊號影響之探討
論文名稱(外文):Effects of steel fibers on the electrochemical corrosion signals of rebar
指導教授:張建智
指導教授(外文):Jiang Jhy Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:165
中文關鍵詞:鋼筋腐蝕鋼纖維腐蝕氯離子腐蝕行為
外文關鍵詞:rebar corrosionsteel fiber corrosionchloride ionscorrosion behaviours
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
鋼筋的腐蝕是鋼筋混凝土結構物破壞的主因,為瞭解鋼筋混凝土在添加鋼纖維後,鋼筋受鹽害作用或碳化作用的腐蝕情形。本研究旨在探討鋼筋與鋼纖維兩種鋼材在不同氯離子濃度(0%,1%,2%,3%)的模擬孔隙水溶液中之腐蝕行為,以及不同添加量的鋼纖維(0%,0.25%,0.5%)對於鋼筋腐蝕訊號之影響,最後再以水泥砂漿作為保護層去作對照,並對鋼纖維水泥砂漿進行力學、物理性質之探討。量測指標主要包括抗壓強度、劈裂強度、吸水率、四極式電阻、開路電位及腐蝕速率。研究結果顯示,鋼纖維較鋼筋來的耐腐蝕,且鋼纖維對氯離子的侵蝕有較好的抵抗。在無任何氯離子進入下,鋼纖維的開路電位較鋼筋來的小。鋼纖維的添加確實會干擾鋼筋腐蝕訊號的量測值。鋼纖維在未腐蝕情況下其腐蝕速率卻落在中高度腐蝕範圍,此試驗結果並不適合作為評估鋼纖維腐蝕速率之可靠指標。低濃度的氯離子侵蝕下,鋼纖維的添加並沒有延緩腐蝕的效果。在氯離子濃度侵蝕到某個時間點其鋼筋的腐蝕機率及腐蝕速率隨著鋼纖維添加量的增加而越低,鋼纖維的添加確實有延緩鋼筋腐蝕的效果。就長期趨勢來看,氯化鈉隨材料事先的?入很可能會使的添加鋼纖維沒有延緩腐蝕的功效,反而會在最後加速鋼筋的腐蝕。
關鍵字:鋼筋腐蝕、鋼纖維腐蝕、氯離子、腐蝕行為
Abstract

Rebar corrosion is a key issue for concrete durability. In this study, what is the effect of adding steel fibers in concrete on the electrochemical measurements is studied. First, the electrochemical measurements were taken for steel fiber and steel rebar in the simulated pore solution environment with chloride concentrations of 0, 1, 2 and 3 %. Then, the electrochemical measurements were taken for steel rebar in the simulated pore solution environment with various chloride concentrations with adding different amount of fibers (0, 0.25 and 0.5%) to see whether the fibers will affect the electrochemical measurements. Final, the mortar specimens were made and electrochemical measurements as well as the mechanical and physical properties, including the open circuit potential, corrosion rate, compressive strength, splitting tensile strength, four-probe electrical resistivity and water absorption test, were evaluated to see the effects of fibers. Results showed that steel fibers had better corrosion prevention capability than rebars, and fibers had better resistance to chloride ions. When no chloride ions existed, the steel fiber had a nobler potential. Adding steel fibers indeed disturb the electrochemical measurements of steel rebar. When steel fibers have no apparent corrosion, the corrosion rate showed a medium-to-high corrosion risk. It means the corrosion rate measurement for steel fibers cannot be taken as the corrosion index. For low chloride ion concentration environment, adding steel fibers did not retard the corrosion of steel rebar. For environments with chloride ions, adding steel fibers can retard the corrosion and this effect becomes more apparent as the volume ratio of steel fibers is higher. For long term trend, if the chloride ion existed in concrete the retarding effect of adding steel fibers is not apparent but more violent corrosion of rebar may occur due to the galvanic cell effect between corroded steel fibers and rebar.
Keywords: rebar corrosion, steel fiber corrosion, chloride ions, corrosion behaviours
目錄
中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3研究範圍 4
1-4研究方法和流程 5
第二章 文獻回顧 8
2-1腐蝕機理 8
2-2鋼纖維 11
2-2-1鋼纖維混凝土特性 11
2-2-2鋼纖維混凝土的耐腐蝕特性 12
2-2-3鋼纖維砂漿的電化學振蕩現象 13
2-2-4微鋼纖維對混凝土鹼骨材反應以及鋼筋腐蝕之影響 14
2-3模擬混凝土孔隙水溶液 15
2-4混凝土中性化機理 16
2-4-1中性化原理 16
2-4-2中性化對鋼筋混凝土的影響 18
2-5氯離子對鋼筋混凝土的影響 20
2-5-1混凝土中氯離子的來源及存在型態 20
2-5-2氯離子對鋼筋的影響 24
2-6直流極化法 26
第三章 實驗計畫 29
3-1實驗變數 29
3-2實驗材料 30
3-3試驗設備 37
3-4試體製作與試驗方法 43
3-4-1試體製作 43
3-4-2試驗方法 49
第四章 結果與分析 58
4-1鋼筋及鋼纖維在模擬孔隙水溶液中的腐蝕行為 58
4-1-1前言 58
4-1-2鋼纖維在0%到3%氯離子濃度的腐蝕行為 67
4-1-2-1開路電位法 67
4-1-2-2直流極化法 70
4-1-3添加鋼纖維對鋼筋在0%氯離子濃度的腐蝕行為 74
4-1-3-1開路電位法 74
4-1-3-2直流極化法 75
4-1-4添加鋼纖維對鋼筋在1%氯離子濃度的腐蝕行為 78
4-1-4-1開路電位法 78
4-1-4-2直流極化法 79
4-1-5添加鋼纖維對鋼筋在2%氯離子濃度的腐蝕行為 83
4-1-5-1開路電位法 83
4-1-5-2直流極化法 85
4-1-6添加鋼纖維對鋼筋在3%氯離子濃度的腐蝕行為 89
4-1-6-1開路電位法 89
4-1-6-2直流極化法 91
4-1-7添加鋼纖維對鋼筋在氯離子濃度變化的腐蝕行為 95
4-1-7-1開路電位法 95
4-1-7-2直流極化法 95
4-1-8不同氯離子濃度變化下鋼筋及鋼纖維之腐蝕行為 98
4-1-8-1開路電位法 98
4-1-8-2直流極化法 99
4-1-9不同氯離子濃度變化下鋼筋及鋼纖維之腐蝕行為 104
4-1-9-1開路電位法 104
4-1-9-2直流極化法 104
4-2鋼筋及鋼纖維在水泥砂漿中的腐蝕行為 109
4-2-1前言 109
4-2-2添加鋼纖對鋼筋水泥砂漿在海水中的腐蝕行為 118
4-2-2-1開路電位法 118
4-2-2-2直流極化法 119
4-2-3添加鋼纖對鋼筋水泥含鹽砂漿在海水中的腐蝕行為 121
4-2-3-1開路電位法 121
4-2-3-2直流極化法 122
4-2-4鋼纖維純砂漿及含鹽砂漿在海水中的腐蝕行為 126
4-2-4-1開路電位法 126
4-2-4-2直流極化法 126
4-2-5鋼纖維在不同位置上之腐蝕電位與速率 130
4-2-6鋼纖維水泥砂漿的力學性質 138
4-2-6-1抗壓強度試驗 138
4-2-6-2劈裂強度試驗 138
4-2-7鋼纖維水泥砂漿的物理性質 141
4-2-7-1吸水率試驗 141
4-2-7-2四極式電阻試驗 141
第五章 結論與建議 144
5-1結論 144
5-2建議 147
參考文獻 148
附錄A
附錄B
謝誌
個人簡歷
參考文獻
1. C. Andrade, M. Castellote, J. Sarria and C. Alonso “Evolution of Pore Solution Chemical, Electroosmosis and Rebar Corrosion Rate Induced by Realkalisation”, Materials and Structures / Materia uxet Construction, Vol. 32, pp. 427-436, 1999.
2. R. Shalon, M. Raphael, “Influence of Sea Water on Corrosion of Reinforcement”, ACI Journal, Proceeding, Vol. 55, No. 12, pp. 1251-1268, 1959.
3. 余烈,“高屏大橋斷橋事件與橋樑安全問題探討”,營造天下,台北,2001。
4. P.K. Mehta, “Durability of Concrete in Marine Environment-A Review”, Performance of Concrete in Marine Environment ACI SP-65, pp. 1-19, 1980.
5. H.G. Wheat, and Z. Eliezer, “Some Electrochemical Aspects of Corrosion of Steel in Concrete”, Corrosion, Vol. 41, No. 11, pp. 640-645, 1985.
6. C.M. Hanson, “Comments on Electrochemical Measurements of The Rate of Corrosion of Steel in Concrete”, Cement and Concrete Research, Vol. 14, No. 4, pp. 574-580, 1984.
7. 趙文成, “海砂對鋼筋混凝土耐久性之影響”, 新拌混凝土中氯離子含量檢測訓練班教材, 內政部營建署, pp. 101-140, 1995.
8. 鮮祺振,“腐蝕控制”, 財團法人徐氏基金會出版,1998。
9. 洪敏雄,“工程材料試驗(Ι)-金屬材料試驗”,中國材料科學學會出版,1999。
10. 洪定海,”混凝土中鋼筋的腐蝕與保護”,中國鐵道出版社,pp. 1-2,1998.
11. Strategic Highway Research Program USA, Transpiration Research Board, pp. 536, 1986.
12. NBS-Battele, “Cost of Metal Corrosion Study”, Part I-Introduction, Materials Performance, May, 1980.
13. 趙國藩,彭少民,黃承逵,等. 鋼纖維混凝土架構[M] . 北京:中國建築工業出版社,1999.
14. 曹國娥,歐志華,劉亞君. 鋼纖維形狀特徵對鋼纖維混凝力學性能的影響[J ] . 新型建築材料, 2002 , (2) :37,38.
15. 程慶國,高路彬,徐蘊賢,等. 鋼纖維混凝土理論及應用[M] . 北京:中國鐵道出版社,1999.
16. J.A. Grubb a, J. Blunt a, C.P. Ostertag a,*, T.M. Devine b,” Effect of steel microfibers on corrosion of steel reinforcing bars”, Cement and Concrete Research 37 (2007) 1115–1126.
17. 施建志,“濕性腐蝕的一般型態及其有關原理”,材料科學第十二卷,pp. 54-63,1992。
18. 黃兆龍, “混凝土性質與行為”,詹氏書局,1997。
19. 張孝全、呂政良、林千惠、蘇稚琳,「纖維在混凝土上的應用」, “http://www.tmmfa.org.tw/出版刊物/magazine/第13期/new_page_3.htm”.
20. M.Maalej, and T.Hashida, “Effect of fiber volume fraction on the off-crack-plane fracture energy in strain hardening engineered cementitious composites”, Journal of America Ceramal Society, Vol.78, No.12, pp.3369-3375, 1995.
21. Semsi Yazici, Gozde Inan, Volkan Tabak, “Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC”, pp.1250–1253, 2007.
22. 趙國藩、彭少民、黃承達,「鋼纖維混凝土結構」,中國建築工業出版社,88年.
23. M. Raupach, C. Dauberschmidt, Critical chloride content for the corrosion of steel fibers in artificial concrete pore solutions, in: V.M. Malhotra (Ed.) ,Proceedings of the Sixth CANMET/ACI International Conference on Durability of Concrete, American Concrete Institute, Farmington Hills, Michigan, 2003, pp. 165–180.
24. P.S. Mangat, K. Gurusamy, Corrosion resistance of steel fibers in concrete under marine exposure, Cement and Concrete Research 18 (1988) 44–54.
25. D.C.Morse,G.R.Williamson,Corrosion Behavior of Steel Fibrous Concrete, Construction Engineering Research Laboratory Technical Report CERL-TRM-217, 1997.
26. 張雲蓮、史美倫、陳志源, 「鋼纖維砂漿的電化學振蕩現象」, 建築材料學報Vol. 8 , No. 5, 2005.
27. C.K. Yi, C.P. Ostertag, Mechanical approach in mitigating alkali-silica reaction, Cement and Concrete Research 35 (2005) 67–75.
28. F. Bekas, L. Turanli, C.P. Ostertag, New approach in mitigating damage caused by alkali-silica reaction, Journal of Materials Science 41 (2006) 5760–5763.
29. C.P. Ostertag, C.K. Yi, P.J.M. Monteiro, “Effect of Confinement on the Properties and Characteristics of the Alkali-Silica Reaction Gel”, ACI Materials Journal 104 (3) (2007) 303–309.
30. C.K. Yi, C.P. Ostertag, Strengthening and toughening mechanisms in microfiber reinforced cementitious composites, Journal of Materials Science 36 (2001) 1513–1522.
31. C.P. Ostertag, C.K. Yi, Crack/Fiber Interaction and Crack Growth Resistance Behavior in Microfiber Reinforced Mortar Specimens, Materials and Structures (in press) doi:10.1617/s11527-006-9181-1.
32. Hausmann, D. A., “Criteria for Cathodic Protection of Steel in Reinforced Concrete Structures”, Materials Protection, Vol.8, No,pp.23-25,1969.
33. Vrable, J. B., “Cathodic Protection for Reinforcing Steel in Concrete”, ASTM STP-629,pp. 124-149, 1977.
34. Barneyback, R. S. and Diamond, J.S.,“Expression and Analysis of Pore Fluids from Hardened Cement Pastes and Mortars”,Cement and Concrete Research, Vol. 11,pp.279-285 ,1981.
35. El-Sherik, A. M. and Shirkhanzadeh, M.,“Hydrogen Permeation Through Cathodically Protected Iron Membranes in Simulated Concrete Environment”,Corrosion, Vol. 48,No.12,pp.1001-1008,1992.
36. Yonezawa, T., Ashworth, V. and Procter, R. P. M.,“Pore Solution Composition and Chloride Effects on the Corrosion of Steel in Concrete”,Corrosion, Vol. 44, No.7,pp.489-499, 1988.
37. P.K. Mehta and J.M. Monteiro, “Concrete Structures, Properties and Materials”, 2nd Edition, Prentice Hall Inc., New Jersey, 1993.
38. 莊秋明,”鋼筋或預力混凝土橋樑等構造物鹽害之防治研究”,防蝕工程第五卷第二期,pp. 14~26,1991。
39. V.G. Papadakis, C.G. Vayenas and M.N. Fardis, “A Reaction Engineering Approach to the Problem of Concrete Carbonation”, AICHE Journal, 35(10), pp.1639-1650, 1989.
40. F.M. LEA, “The Chemistry of Cement and Concrete”, Arnold, London, 1970.
41. S. Zdenek, “Carbonation of Porous Concrete and Its Main Binding Components”, Cement and Concrete Research, 1(6), pp. 645-662, 1971.
42. T. Braid, A.G Cairns-Smith, and D.S. Snell, “Morphology and CO2 Uptake in Tobermorite Gel”, Journal of Colloid and Interface Science, 50(2), pp. 387-391, 1975.
43. S. Kazutaka, N. Tadahiro and I. Suketoshi, “Formation and Carbonation of C-S-H in Water”, Cement and Concrete Research, 15(2), pp. 213-224, 1985.
44. V.G. Papadakis, M.N. Fardis and C.G. Vayenas, “Effect of Composition, Environmental Factors and Cement-lime Mortar Coating on Concrete Carbonation”, Materials and Structures, 25(149), pp. 293-304, 1992.
45. 柯賢文,”腐蝕及其防治”,全華科技圖書股份有限公司,2003。
46. L.J. Parrot and D.C. Killoch, “Carbonation in 36 year old, in-situ Concrete”, Cement and Concrete Research, 1989, 19(4), pp. 649-656
47. 黃兆龍,“混凝土摻用海砂之策略及檢測技術研討會論文輯”,財團法人台灣營建研究中心,1994。
48. 黃兆龍,”混凝土中氯離子檢測分析方法”,海砂與土木建築結構物可靠度關係研習會,1994。
49. M. Sindney and Y. J. Francis, “Concrete”, Prentice-Hall, N. J., 1981.
50. ASTM Standard G3-89, “Standard Practice for Convention Applicable to Electro-chemical Measurement in Corrosion Testing”, ASTM, Philadelphia, 1996.
51. S.G. Mckenzie, “Techniques for Monitoring Corrosion of Steel in Concrete”, Corrosion prevention & Control, pp. 11-17, 1987.
52. J.A. Andrade, V. Castelo, C. Alonso and J.A. Gonzalez, “The Determination of the Corrosion Rate of Steel Embedded in Concrete the Polarization Resistance and AC Impendance Methods”, ASTM STP-906, pp. 43-63, 1984
53. J.A. Gonzalez, J.A. Andrade and S. Algaba, “Corrosion of British Corrosion Journal”, Vol.15, No.3, pp. 135-139, 1980.
54. N.S. Berke, M.P. Dallaire, M.C. Hicks and R.J. Hoops, “Corrosion of Steel in Cracked Concrete”, Corrosion Engineering, Vol.49, No.11, pp. 934-943, 1993.
55. R.K. Dhir, M.R. Jouts and M.J. McCarthy, “Quantifying Chloride-Induced Corrosion from Half-Cell Potential”, Cement and Concrete Research, Vol.23, No.4, pp. 1443-1454, 1993.
56. C. Andrade and C. Alonso, “On-Site Measurement of Corrosion Rate of Reinforcements”, Construction and Building Materials, Vol.15, pp. 141-145, 2001.
57. M.G. Grantham, M.G. Associates, H. Barnet, and J. Broomfield, “The Use of Linear Polarization Corrosion Rate Measurement in Aiding Rehabilitation Options for the Deck Slabs of a Reinforced Concrete Underground Car Park”, Construction and Building Materials, Vol.11, No.4, pp. 215-224, 1997.
58. 胡弘昌,「碳化及鹽害環境下混凝土性質及腐蝕行為之研究」,國立台灣海洋大學河海工程研究所碩士學位論文,94年6月.
59. 張建智,「陰極防蝕電流對鋼筋混凝土界面性質及氫滲行為影響之研究」,國立台灣海洋大學河海工程研究所博士學位論文,86年1月.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔